Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application

Detalhes bibliográficos
Autor(a) principal: Abadia, Claudia Patricia Marin
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/16870
Resumo: In this work, Biosilicate scaffolds were synthesized using the foam replica technique. Biosilicate is highly bioactive, biodegradable, antibacterial, and non-toxic. Despite of these properties, Biosilicate scaffolds present low mechanical strength, limiting their clinical applications. Therefore, our aim was to increase the mechanical properties of the Biosilicate scaffolds by several F18 glass coatings. First, the Ryshkewitch and Ashby & Gibson models were used to calculate the maximum theoretical compressive strength of the scaffolds in function of their porosity, taking into account the ideal conditions found in the literature. Biosilicate scaffolds were prepared through the foam replica technique; then, they were coated several times with F18 Bioglass slurry to eliminate their defects and reinforce their structures. The scaffolds were characterized by microstructure, total porosity, average cell size, and compressive strength. The material exhibited a total porosity of 82%, an average cell size of 525 μm, and compressive strength of 3.3 (± 0.3) MPa, values in the range of commercial scaffolds based on Hydroxiapatite and β-TCP. Scanning Electron Microscopy showed that F18 bioglass helped to remove surface defects and partially infiltrated the hollow Biosilicate-struts, increasing significantly the resistance of the material. Also, in vitro osteogenic differentiation of human Adipose-derived mesenchymal Stem Cells (hASCs) was evaluated using F18 glass-coated Biosilicate scaffolds and their ionic dissolution products. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 21. Mineralizing tissue-associated proteins and osteogenic differentiation factor expressions were measured using Q-PCR. Additionally, alkaline phosphatase enzyme production and extracellular matrix mineralization were evaluated. The alkaline phosphatase activity, mineralization and bone-related gene expression of hASCs were significantly enhanced upon stimulation with both scaffolds and their ionic extracts. This work evidenced that F18 glass-coated Biosilicate scaffolds have a high potential for dental applications.
id SCAR_2451ed32f568a4634559f94e20de1cb9
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16870
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Abadia, Claudia Patricia MarinZanotto, Edgar Dutrahttp://lattes.cnpq.br/1055167132036400Crovace, Murilo Camurihttp://lattes.cnpq.br/2960564171443068http://lattes.cnpq.br/34410401545259612e600f39-a378-4758-85fe-f22e5c5d1ebe2022-10-14T11:30:28Z2022-10-14T11:30:28Z2019-10-16ABADIA, Claudia Patricia Marin. Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application. 2019. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16870.https://repositorio.ufscar.br/handle/ufscar/16870In this work, Biosilicate scaffolds were synthesized using the foam replica technique. Biosilicate is highly bioactive, biodegradable, antibacterial, and non-toxic. Despite of these properties, Biosilicate scaffolds present low mechanical strength, limiting their clinical applications. Therefore, our aim was to increase the mechanical properties of the Biosilicate scaffolds by several F18 glass coatings. First, the Ryshkewitch and Ashby & Gibson models were used to calculate the maximum theoretical compressive strength of the scaffolds in function of their porosity, taking into account the ideal conditions found in the literature. Biosilicate scaffolds were prepared through the foam replica technique; then, they were coated several times with F18 Bioglass slurry to eliminate their defects and reinforce their structures. The scaffolds were characterized by microstructure, total porosity, average cell size, and compressive strength. The material exhibited a total porosity of 82%, an average cell size of 525 μm, and compressive strength of 3.3 (± 0.3) MPa, values in the range of commercial scaffolds based on Hydroxiapatite and β-TCP. Scanning Electron Microscopy showed that F18 bioglass helped to remove surface defects and partially infiltrated the hollow Biosilicate-struts, increasing significantly the resistance of the material. Also, in vitro osteogenic differentiation of human Adipose-derived mesenchymal Stem Cells (hASCs) was evaluated using F18 glass-coated Biosilicate scaffolds and their ionic dissolution products. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 21. Mineralizing tissue-associated proteins and osteogenic differentiation factor expressions were measured using Q-PCR. Additionally, alkaline phosphatase enzyme production and extracellular matrix mineralization were evaluated. The alkaline phosphatase activity, mineralization and bone-related gene expression of hASCs were significantly enhanced upon stimulation with both scaffolds and their ionic extracts. This work evidenced that F18 glass-coated Biosilicate scaffolds have a high potential for dental applications.O Biovidro F18 e o Biosilicato são biomateriais com uma alta bioatividade. No entanto, os scaffolds de Biosilicato apresentam baixa resistência mecânica, o que impede sua aplicação clínica. Por essa razão, nosso interesse foi desenvolver scaffolds combinando o Biosilicato e o F18 para incrementar as propriedades mecânicas do material. Inicialmente, empregando-se os modelos de Ryshkewitch e de Ashby & Gibson, foi calculada a resistência mecânica teórica máxima de um scaffold. Os scaffolds de Biosilicato foram preparados através da técnica de réplica e, em seguida, foram recobertos várias vezes com uma suspensão de F18, de forma a eliminar defeitos e, portanto, reforçar a sua estrutura. Os scaffolds obtidos foram caracterizados em relação à microestrutura, porosidade total, abertura média das células e resistência mecânica à compressão. Os resultados mostraram que os scaffolds apresentam uma porosidade total de 82%, com abertura média de células de 525 μm e resistência mecânica à compressão de 3,3 MPa, valores compatíveis com os scaffolds comerciais à base de hidroxiapatita ou β-TCP. As análises de Microscopia Eletrônica de Varredura mostraram que o F18 ajudou a eliminar defeitos superficiais e infiltrou-se parcialmente na estrutura oca dos scaffolds, aumentando significativamente sua resistência mecânica. A diferenciação osteogênica in vitro de células-tronco mesenquimais foi avaliada usando os scaffolds de Biosilicato recobertos com Biovidrio, assim como os íons liberados pelo biomaterial. A expressão gênica foi avaliada utilizando a metodologia de PCR após 21 dias em meio osteogênico. A expressão de fatores associados à diferenciação osteogênica foram medidas usando Q-PCR. Além disso, avaliou-se a produção da enzima fosfatase alcalina e a mineralização. A atividade de diversos fatores foi significativamente aumentada na presença dos scaffolds ou de seus produtos de dissolução. Estes resultados mostram que os scaffolds desenvolvidos neste trabalho possuem grande potencial para aplicações em odontologia.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBiosilicatoBiovidro F18RecobrimentoDiferenciação osteogênicaBiosilicateF18 glassScaffoldCoatingOsteogenic DifferentiationENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICASynthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental applicationSíntese e caracterização de andaimes de Biosilicate/F18 biovidro para aplicação odontológicainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006006cfabc63-f3c2-48d1-ba85-c4d9edda486breponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALClaudia Patricia Marin Abadia - Tese .pdfClaudia Patricia Marin Abadia - Tese .pdfapplication/pdf8480975https://repositorio.ufscar.br/bitstream/ufscar/16870/1/Claudia%20Patricia%20Marin%20Abadia%20-%20Tese%20.pdf2aa0e75267883fb7451252672b6aeb4bMD51BCO carta comprovante autoarquivamento P.pdfBCO carta comprovante autoarquivamento P.pdfapplication/pdf1238886https://repositorio.ufscar.br/bitstream/ufscar/16870/2/BCO%20carta%20comprovante%20autoarquivamento%20P.pdfd9ff1da07a12b9528c8b99527a6e5e6aMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16870/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTClaudia Patricia Marin Abadia - Tese .pdf.txtClaudia Patricia Marin Abadia - Tese .pdf.txtExtracted texttext/plain305369https://repositorio.ufscar.br/bitstream/ufscar/16870/4/Claudia%20Patricia%20Marin%20Abadia%20-%20Tese%20.pdf.txta9cb51653a6b7ff02cdcf4eb87a9858dMD54BCO carta comprovante autoarquivamento P.pdf.txtBCO carta comprovante autoarquivamento P.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/16870/6/BCO%20carta%20comprovante%20autoarquivamento%20P.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD56THUMBNAILClaudia Patricia Marin Abadia - Tese .pdf.jpgClaudia Patricia Marin Abadia - Tese .pdf.jpgIM Thumbnailimage/jpeg6009https://repositorio.ufscar.br/bitstream/ufscar/16870/5/Claudia%20Patricia%20Marin%20Abadia%20-%20Tese%20.pdf.jpg132b5ed764b5de410d3a55a812561fb6MD55BCO carta comprovante autoarquivamento P.pdf.jpgBCO carta comprovante autoarquivamento P.pdf.jpgIM Thumbnailimage/jpeg14157https://repositorio.ufscar.br/bitstream/ufscar/16870/7/BCO%20carta%20comprovante%20autoarquivamento%20P.pdf.jpgce5046946be35402ed955ef6c9bb0106MD57ufscar/168702023-09-18 18:32:33.115oai:repositorio.ufscar.br:ufscar/16870Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:33Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
dc.title.alternative.por.fl_str_mv Síntese e caracterização de andaimes de Biosilicate/F18 biovidro para aplicação odontológica
title Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
spellingShingle Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
Abadia, Claudia Patricia Marin
Biosilicato
Biovidro F18
Recobrimento
Diferenciação osteogênica
Biosilicate
F18 glass
Scaffold
Coating
Osteogenic Differentiation
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
title_full Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
title_fullStr Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
title_full_unstemmed Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
title_sort Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application
author Abadia, Claudia Patricia Marin
author_facet Abadia, Claudia Patricia Marin
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3441040154525961
dc.contributor.author.fl_str_mv Abadia, Claudia Patricia Marin
dc.contributor.advisor1.fl_str_mv Zanotto, Edgar Dutra
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1055167132036400
dc.contributor.advisor-co1.fl_str_mv Crovace, Murilo Camuri
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2960564171443068
dc.contributor.authorID.fl_str_mv 2e600f39-a378-4758-85fe-f22e5c5d1ebe
contributor_str_mv Zanotto, Edgar Dutra
Crovace, Murilo Camuri
dc.subject.por.fl_str_mv Biosilicato
Biovidro F18
Recobrimento
Diferenciação osteogênica
topic Biosilicato
Biovidro F18
Recobrimento
Diferenciação osteogênica
Biosilicate
F18 glass
Scaffold
Coating
Osteogenic Differentiation
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.eng.fl_str_mv Biosilicate
F18 glass
Scaffold
Coating
Osteogenic Differentiation
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description In this work, Biosilicate scaffolds were synthesized using the foam replica technique. Biosilicate is highly bioactive, biodegradable, antibacterial, and non-toxic. Despite of these properties, Biosilicate scaffolds present low mechanical strength, limiting their clinical applications. Therefore, our aim was to increase the mechanical properties of the Biosilicate scaffolds by several F18 glass coatings. First, the Ryshkewitch and Ashby & Gibson models were used to calculate the maximum theoretical compressive strength of the scaffolds in function of their porosity, taking into account the ideal conditions found in the literature. Biosilicate scaffolds were prepared through the foam replica technique; then, they were coated several times with F18 Bioglass slurry to eliminate their defects and reinforce their structures. The scaffolds were characterized by microstructure, total porosity, average cell size, and compressive strength. The material exhibited a total porosity of 82%, an average cell size of 525 μm, and compressive strength of 3.3 (± 0.3) MPa, values in the range of commercial scaffolds based on Hydroxiapatite and β-TCP. Scanning Electron Microscopy showed that F18 bioglass helped to remove surface defects and partially infiltrated the hollow Biosilicate-struts, increasing significantly the resistance of the material. Also, in vitro osteogenic differentiation of human Adipose-derived mesenchymal Stem Cells (hASCs) was evaluated using F18 glass-coated Biosilicate scaffolds and their ionic dissolution products. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 21. Mineralizing tissue-associated proteins and osteogenic differentiation factor expressions were measured using Q-PCR. Additionally, alkaline phosphatase enzyme production and extracellular matrix mineralization were evaluated. The alkaline phosphatase activity, mineralization and bone-related gene expression of hASCs were significantly enhanced upon stimulation with both scaffolds and their ionic extracts. This work evidenced that F18 glass-coated Biosilicate scaffolds have a high potential for dental applications.
publishDate 2019
dc.date.issued.fl_str_mv 2019-10-16
dc.date.accessioned.fl_str_mv 2022-10-14T11:30:28Z
dc.date.available.fl_str_mv 2022-10-14T11:30:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ABADIA, Claudia Patricia Marin. Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application. 2019. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16870.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16870
identifier_str_mv ABADIA, Claudia Patricia Marin. Synthesis and characterization of Biosilicate/F18 bioglass scaffolds for dental application. 2019. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16870.
url https://repositorio.ufscar.br/handle/ufscar/16870
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 6cfabc63-f3c2-48d1-ba85-c4d9edda486b
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16870/1/Claudia%20Patricia%20Marin%20Abadia%20-%20Tese%20.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16870/2/BCO%20carta%20comprovante%20autoarquivamento%20P.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16870/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16870/4/Claudia%20Patricia%20Marin%20Abadia%20-%20Tese%20.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16870/6/BCO%20carta%20comprovante%20autoarquivamento%20P.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16870/5/Claudia%20Patricia%20Marin%20Abadia%20-%20Tese%20.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/16870/7/BCO%20carta%20comprovante%20autoarquivamento%20P.pdf.jpg
bitstream.checksum.fl_str_mv 2aa0e75267883fb7451252672b6aeb4b
d9ff1da07a12b9528c8b99527a6e5e6a
e39d27027a6cc9cb039ad269a5db8e34
a9cb51653a6b7ff02cdcf4eb87a9858d
68b329da9893e34099c7d8ad5cb9c940
132b5ed764b5de410d3a55a812561fb6
ce5046946be35402ed955ef6c9bb0106
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136413295083520