Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels

Detalhes bibliográficos
Autor(a) principal: Carvalho, Paula Squinca de
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/15158
Resumo: The integrated production of different bioproducts has been considered essential to make biorefineries economically viable. Among the bioproducts, cellulose nanomaterials (CNs) have attracted significant attention due to their attractive properties and wide spectrum of applications. The use of enzymes to isolate cellulose nanomaterials have gained growing interests mainly associated with the milder operational conditions and the selectivity and specificity of these biocatalysts. However, the available commercial enzymatic preparations are not optimized for this purpose yet. Besides, exploiting agro-industrial residues as feedstock to nanomaterials production is another advantageous strategy from environmental and economic point of views. Within this context, cellulose nanomaterials were isolated through enzymatic and mechanical routes for applications in manufacture of hydrogels. Enzymes were produced by Aspergillus niger under solid-state fermentation and applied to obtain the CNs via enzymatic hydrolysis followed by sonication using eucalyptus cellulose pulp as a model feedstock. The condition that resulted in the highest yield of cellulose nanocrystals isolation was determined through central composite rotational design and the nanomaterials presented high crystallinity index and good thermal stability. The ginger residue was used as feedstock to obtain cellulose nanofibrils (CNFs) by mechanical treatment and applied to prepare hydrogels through vacuum-assisted filtration. The hydrogels presented transparency, biocompatibility, tunable liquid absorption, flexibility combined with good mechanical stability in moist conditions, and antimicrobial performance showing to be promising materials for wound dressing applications. In the final part of the thesis, cellulose nanomaterials produced with commercial and non-commercial enzymes were incorporated into gelatin-based hydrogels which were prepared by solvent casting using tannic acid as crosslinker and ginger essential oil to increase the antimicrobial properties. The hydrogels inhibited the growth of Staphylococcus aureus and Escherichia coli and the cellulose nanomaterials obtained with non-commercial enzymes better contributed to their structural integrity. These results provided a proof of concept that cellulose nanomaterials can be efficiently obtained using non-commercial enzymes and applied in hydrogel manufacture. Meanwhile, for an already established route, hydrogels totally based on nanofibrils extracted from ginger showed important properties to be used as wound dressing.
id SCAR_442168d20a752a6b4e06226e83a36dac
oai_identifier_str oai:repositorio.ufscar.br:ufscar/15158
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Carvalho, Paula Squinca deFarinas, Cristiane Sanchezhttp://lattes.cnpq.br/9933650905615452Badino, Alberto Collihttp://lattes.cnpq.br/6244428434217018http://lattes.cnpq.br/42634687114323399f97e7c8-3b90-4f54-884d-0d24d6f4c80a2021-11-24T19:10:56Z2021-11-24T19:10:56Z2021-11-10CARVALHO, Paula Squinca de. Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15158.https://repositorio.ufscar.br/handle/ufscar/15158The integrated production of different bioproducts has been considered essential to make biorefineries economically viable. Among the bioproducts, cellulose nanomaterials (CNs) have attracted significant attention due to their attractive properties and wide spectrum of applications. The use of enzymes to isolate cellulose nanomaterials have gained growing interests mainly associated with the milder operational conditions and the selectivity and specificity of these biocatalysts. However, the available commercial enzymatic preparations are not optimized for this purpose yet. Besides, exploiting agro-industrial residues as feedstock to nanomaterials production is another advantageous strategy from environmental and economic point of views. Within this context, cellulose nanomaterials were isolated through enzymatic and mechanical routes for applications in manufacture of hydrogels. Enzymes were produced by Aspergillus niger under solid-state fermentation and applied to obtain the CNs via enzymatic hydrolysis followed by sonication using eucalyptus cellulose pulp as a model feedstock. The condition that resulted in the highest yield of cellulose nanocrystals isolation was determined through central composite rotational design and the nanomaterials presented high crystallinity index and good thermal stability. The ginger residue was used as feedstock to obtain cellulose nanofibrils (CNFs) by mechanical treatment and applied to prepare hydrogels through vacuum-assisted filtration. The hydrogels presented transparency, biocompatibility, tunable liquid absorption, flexibility combined with good mechanical stability in moist conditions, and antimicrobial performance showing to be promising materials for wound dressing applications. In the final part of the thesis, cellulose nanomaterials produced with commercial and non-commercial enzymes were incorporated into gelatin-based hydrogels which were prepared by solvent casting using tannic acid as crosslinker and ginger essential oil to increase the antimicrobial properties. The hydrogels inhibited the growth of Staphylococcus aureus and Escherichia coli and the cellulose nanomaterials obtained with non-commercial enzymes better contributed to their structural integrity. These results provided a proof of concept that cellulose nanomaterials can be efficiently obtained using non-commercial enzymes and applied in hydrogel manufacture. Meanwhile, for an already established route, hydrogels totally based on nanofibrils extracted from ginger showed important properties to be used as wound dressing.A produção integrada de diferentes bioprodutos tem sido considerada essencial para tornar as biorrefinarias economicamente viáveis, com destaque para os nanomateriais de celulose (NCs) dadas suas propriedades atrativas e amplo espectro de aplicações. É crescente o interesse no uso de enzimas para isolar nanomateriais de celulose devido à suas seletividade e especificidade, além das brandas condições operacionais. Contudo, as preparações enzimáticas comerciais disponíveis atualmente ainda não estão otimizadas para este fim. Outra estratégia vantajosa do ponto de vista econômico e ambiental é a exploração de resíduos agroindustriais como matérias-primas para obtenção desses nanomateriais. Neste trabalho, nanomateriais de celulose foram isolados por meio de rotas enzimáticas e mecânicas e usados na fabricação de hidrogéis. Enzimas foram produzidas por Aspergillus niger sob fermentação em estado sólido e utilizadas para obtenção de NCs através de hidrólise enzimática seguida de sonicação utilizando polpa de celulose de eucalipto como substrato modelo. A condição de maior rendimento foi determinada através de planejamento composto central rotacional e resultou em nanocristais de celulose com elevado índice de cristalinidade e boa estabilidade térmica. Resíduo de gengibre foi utilizado como matéria-prima para a obtenção de nanofibrilas de celulose (NFCs) por tratamento mecânico e aplicadas na preparação de hidrogéis obtidos por filtração à vácuo. Os hidrogéis apresentaram transparência, biocompatibilidade, ajustável capacidade de absorção de líquidos, boa flexibilidade e estabilidade mecânica em condições úmidas além de propriedades antimicrobianas, mostrando-se promissores para aplicações como curativos. Na parte final da tese, NCs produzidos utilizando enzimas comerciais e não comerciais foram incorporados a hidrogéis preparados por solvent casting utilizando gelatina, ácido tânico como reticulador e óleo essencial de gengibre para aumentar as propriedades antimicrobianas. Os hidrogéis apresentaram atividade antibacteriana inibindo o crescimento de Staphylococcus aureus e de Escherichia coli e os NCs obtidos com enzimas não comerciais ofereceram melhor contribuição para a integridade estrutural. Tais resultados oferecem uma prova de conceito de que nanomateriais de celulose podem ser eficientemente obtidos utilizando de enzimas não comerciais e aplicados na fabricação de hidrogel. Já para a estabelecida rota mecânica, foi demonstrado que hidrogéis obtidos exclusivamente a partir de nanofibras de gengibre apresentaram propriedades importantes que possibilitam sua aplicação como curativos.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)168232/2017-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)88887.465611/2019-00, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDesenvolvimento sustentávelHidrólise enzimáticaEnzimas não comerciaisGengibreHidrogéisSustainable developmentEnzymatic hydrolysisNon-commercial enzymesGingerHydrogelsENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICACellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogelsNanomateriais celulósicos isolados via rotas enzimática e mecânica para aplicação em hidrogéisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600dd9ceb6c-d509-421a-a31e-bcb55bb21e02reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTesePSC_VF.pdfTesePSC_VF.pdfTeseapplication/pdf27483166https://repositorio.ufscar.br/bitstream/ufscar/15158/1/TesePSC_VF.pdf8872a07346bd15c22dcd69e8bcf9b022MD51Carta comprovante versão final da tese.pdfCarta comprovante versão final da tese.pdfapplication/pdf79892https://repositorio.ufscar.br/bitstream/ufscar/15158/3/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdfa313202709bb92fd310a7b74d36f2e53MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15158/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTesePSC_VF.pdf.txtTesePSC_VF.pdf.txtExtracted texttext/plain482052https://repositorio.ufscar.br/bitstream/ufscar/15158/5/TesePSC_VF.pdf.txt34235a9465bd456240a9abf31b7d922fMD55Carta comprovante versão final da tese.pdf.txtCarta comprovante versão final da tese.pdf.txtExtracted texttext/plain994https://repositorio.ufscar.br/bitstream/ufscar/15158/7/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.txtb525f0bdcf14855d031510d2f91a53aeMD57THUMBNAILTesePSC_VF.pdf.jpgTesePSC_VF.pdf.jpgIM Thumbnailimage/jpeg6485https://repositorio.ufscar.br/bitstream/ufscar/15158/6/TesePSC_VF.pdf.jpg305598bc74896081919e01c27cefda46MD56Carta comprovante versão final da tese.pdf.jpgCarta comprovante versão final da tese.pdf.jpgIM Thumbnailimage/jpeg5943https://repositorio.ufscar.br/bitstream/ufscar/15158/8/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.jpg231253fe90fdcacb8115018f238f4c2eMD58ufscar/151582023-09-18 18:32:20.67oai:repositorio.ufscar.br:ufscar/15158Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
dc.title.alternative.por.fl_str_mv Nanomateriais celulósicos isolados via rotas enzimática e mecânica para aplicação em hidrogéis
title Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
spellingShingle Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
Carvalho, Paula Squinca de
Desenvolvimento sustentável
Hidrólise enzimática
Enzimas não comerciais
Gengibre
Hidrogéis
Sustainable development
Enzymatic hydrolysis
Non-commercial enzymes
Ginger
Hydrogels
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
title_short Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
title_full Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
title_fullStr Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
title_full_unstemmed Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
title_sort Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels
author Carvalho, Paula Squinca de
author_facet Carvalho, Paula Squinca de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4263468711432339
dc.contributor.author.fl_str_mv Carvalho, Paula Squinca de
dc.contributor.advisor1.fl_str_mv Farinas, Cristiane Sanchez
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9933650905615452
dc.contributor.advisor-co1.fl_str_mv Badino, Alberto Colli
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6244428434217018
dc.contributor.authorID.fl_str_mv 9f97e7c8-3b90-4f54-884d-0d24d6f4c80a
contributor_str_mv Farinas, Cristiane Sanchez
Badino, Alberto Colli
dc.subject.por.fl_str_mv Desenvolvimento sustentável
Hidrólise enzimática
Enzimas não comerciais
topic Desenvolvimento sustentável
Hidrólise enzimática
Enzimas não comerciais
Gengibre
Hidrogéis
Sustainable development
Enzymatic hydrolysis
Non-commercial enzymes
Ginger
Hydrogels
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
dc.subject.eng.fl_str_mv Gengibre
Hidrogéis
Sustainable development
Enzymatic hydrolysis
Non-commercial enzymes
Ginger
Hydrogels
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
description The integrated production of different bioproducts has been considered essential to make biorefineries economically viable. Among the bioproducts, cellulose nanomaterials (CNs) have attracted significant attention due to their attractive properties and wide spectrum of applications. The use of enzymes to isolate cellulose nanomaterials have gained growing interests mainly associated with the milder operational conditions and the selectivity and specificity of these biocatalysts. However, the available commercial enzymatic preparations are not optimized for this purpose yet. Besides, exploiting agro-industrial residues as feedstock to nanomaterials production is another advantageous strategy from environmental and economic point of views. Within this context, cellulose nanomaterials were isolated through enzymatic and mechanical routes for applications in manufacture of hydrogels. Enzymes were produced by Aspergillus niger under solid-state fermentation and applied to obtain the CNs via enzymatic hydrolysis followed by sonication using eucalyptus cellulose pulp as a model feedstock. The condition that resulted in the highest yield of cellulose nanocrystals isolation was determined through central composite rotational design and the nanomaterials presented high crystallinity index and good thermal stability. The ginger residue was used as feedstock to obtain cellulose nanofibrils (CNFs) by mechanical treatment and applied to prepare hydrogels through vacuum-assisted filtration. The hydrogels presented transparency, biocompatibility, tunable liquid absorption, flexibility combined with good mechanical stability in moist conditions, and antimicrobial performance showing to be promising materials for wound dressing applications. In the final part of the thesis, cellulose nanomaterials produced with commercial and non-commercial enzymes were incorporated into gelatin-based hydrogels which were prepared by solvent casting using tannic acid as crosslinker and ginger essential oil to increase the antimicrobial properties. The hydrogels inhibited the growth of Staphylococcus aureus and Escherichia coli and the cellulose nanomaterials obtained with non-commercial enzymes better contributed to their structural integrity. These results provided a proof of concept that cellulose nanomaterials can be efficiently obtained using non-commercial enzymes and applied in hydrogel manufacture. Meanwhile, for an already established route, hydrogels totally based on nanofibrils extracted from ginger showed important properties to be used as wound dressing.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-24T19:10:56Z
dc.date.available.fl_str_mv 2021-11-24T19:10:56Z
dc.date.issued.fl_str_mv 2021-11-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARVALHO, Paula Squinca de. Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15158.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/15158
identifier_str_mv CARVALHO, Paula Squinca de. Cellulose nanomaterials isolated via enzymatic and mechanical routes for application in hydrogels. 2021. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15158.
url https://repositorio.ufscar.br/handle/ufscar/15158
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv dd9ceb6c-d509-421a-a31e-bcb55bb21e02
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/15158/1/TesePSC_VF.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15158/3/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15158/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/15158/5/TesePSC_VF.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15158/7/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15158/6/TesePSC_VF.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/15158/8/Carta%20comprovante%20vers%c3%a3o%20final%20da%20tese.pdf.jpg
bitstream.checksum.fl_str_mv 8872a07346bd15c22dcd69e8bcf9b022
a313202709bb92fd310a7b74d36f2e53
e39d27027a6cc9cb039ad269a5db8e34
34235a9465bd456240a9abf31b7d922f
b525f0bdcf14855d031510d2f91a53ae
305598bc74896081919e01c27cefda46
231253fe90fdcacb8115018f238f4c2e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136398170423296