MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382016000200301 |
Resumo: | ABSTRACT This paper addresses the problem of fault detection in stator winding of induction machine by a multiple change points detection approach in time series. To handle this problem a new fuzzy/Bayesian approach is proposed which differs from previous approaches since it does not require prior information as: the number of change points or the characterization of the data probabilistic distribution. The approach has been applied in the monitoring the current of the stator winding induction machine. The good results obtained by proposed methodology illustrate its efficiency. |
id |
SOBRAPO-1_dfeefa48aec4d323175b3241649934b0 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382016000200301 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTIONFuzzy/Bayesianmultiple change points detectionfault monitoringABSTRACT This paper addresses the problem of fault detection in stator winding of induction machine by a multiple change points detection approach in time series. To handle this problem a new fuzzy/Bayesian approach is proposed which differs from previous approaches since it does not require prior information as: the number of change points or the characterization of the data probabilistic distribution. The approach has been applied in the monitoring the current of the stator winding induction machine. The good results obtained by proposed methodology illustrate its efficiency.Sociedade Brasileira de Pesquisa Operacional2016-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382016000200301Pesquisa Operacional v.36 n.2 2016reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2016.036.02.0301info:eu-repo/semantics/openAccessD'Angelo,Marcos F.S.V.Palhares,Reinaldo M.Maia,Renato D.Mendes,João B.Ekel,Petr Ya.Cangussu,Camila K.S.Aguiar,Lucas A.eng2016-08-30T00:00:00Zoai:scielo:S0101-74382016000200301Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2016-08-30T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
title |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
spellingShingle |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION D'Angelo,Marcos F.S.V. Fuzzy/Bayesian multiple change points detection fault monitoring |
title_short |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
title_full |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
title_fullStr |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
title_full_unstemmed |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
title_sort |
MONITORING THE STATOR CURRENT IN INDUCTION MACHINES FOR POSSIBLE FAULT DETECTION: A FUZZY/BAYESIAN APPROACH FOR THE PROBLEM OF TIME SERIES MULTIPLE CHANGE POINT DETECTION |
author |
D'Angelo,Marcos F.S.V. |
author_facet |
D'Angelo,Marcos F.S.V. Palhares,Reinaldo M. Maia,Renato D. Mendes,João B. Ekel,Petr Ya. Cangussu,Camila K.S. Aguiar,Lucas A. |
author_role |
author |
author2 |
Palhares,Reinaldo M. Maia,Renato D. Mendes,João B. Ekel,Petr Ya. Cangussu,Camila K.S. Aguiar,Lucas A. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
D'Angelo,Marcos F.S.V. Palhares,Reinaldo M. Maia,Renato D. Mendes,João B. Ekel,Petr Ya. Cangussu,Camila K.S. Aguiar,Lucas A. |
dc.subject.por.fl_str_mv |
Fuzzy/Bayesian multiple change points detection fault monitoring |
topic |
Fuzzy/Bayesian multiple change points detection fault monitoring |
description |
ABSTRACT This paper addresses the problem of fault detection in stator winding of induction machine by a multiple change points detection approach in time series. To handle this problem a new fuzzy/Bayesian approach is proposed which differs from previous approaches since it does not require prior information as: the number of change points or the characterization of the data probabilistic distribution. The approach has been applied in the monitoring the current of the stator winding induction machine. The good results obtained by proposed methodology illustrate its efficiency. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382016000200301 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382016000200301 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2016.036.02.0301 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.36 n.2 2016 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018118811648 |