Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis

Detalhes bibliográficos
Autor(a) principal: Liska, Gilberto Rodrigues
Data de Publicação: 2015
Outros Autores: Menezes, Fortunato Silva de, Cirillo, Marcelo Angelo, Borém, Flávio Meira, Cortez, Ricardo Miguel, Ribeiro, Diego Egídio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/18655
Resumo: Automatic classification methods have been widely used in numerous situations and the boosting method has become known for use of a classification algorithm, which considers a set of training data and, from that set, constructs a classifier with reweighted versions of the training set. Given this characteristic, the aim of this study is to assess a sensory experiment related to acceptance tests with specialty coffees, with reference to both trained and untrained consumer groups. For the consumer group, four sensory characteristics were evaluated, such as aroma, body, sweetness, and final score, attributed to four types of specialty coffees. In order to obtain a classification rule that discriminates trained and untrained tasters, we used the conventional Fisher’s Linear Discriminant Analysis (LDA) and discriminant analysis via boosting algorithm (AdaBoost). The criteria used in the comparison of the two approaches were sensitivity, specificity, false positive rate, false negative rate, and accuracy of classification methods. Additionally, to evaluate the performance of the classifiers, the success rates and error rates were obtained by Monte Carlo simulation, considering 100 replicas of a random partition of 70% for the training set, and the remaining for the test set. It was concluded that the boosting method applied to discriminant analysis yielded a higher sensitivity rate in regard to the trained panel, at a value of 80.63% and, hence, reduction in the rate of false negatives, at 19.37%. Thus, the boosting method may be used as a means of improving the LDA classifier for discrimination of trained tasters.
id UEL-11_931a153c37d6cf3ec22b4030bf8406cf
oai_identifier_str oai:ojs.pkp.sfu.ca:article/18655
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysisAvaliação de painéis sensoriais com consumidores de bebidas de cafés especiais utilizando o método boosting na análise discriminanteSensory analysisAdaboostingCoffee qualityConsumers.Análise sensorialAdaboostingQualidade de cafésConsumidores.Automatic classification methods have been widely used in numerous situations and the boosting method has become known for use of a classification algorithm, which considers a set of training data and, from that set, constructs a classifier with reweighted versions of the training set. Given this characteristic, the aim of this study is to assess a sensory experiment related to acceptance tests with specialty coffees, with reference to both trained and untrained consumer groups. For the consumer group, four sensory characteristics were evaluated, such as aroma, body, sweetness, and final score, attributed to four types of specialty coffees. In order to obtain a classification rule that discriminates trained and untrained tasters, we used the conventional Fisher’s Linear Discriminant Analysis (LDA) and discriminant analysis via boosting algorithm (AdaBoost). The criteria used in the comparison of the two approaches were sensitivity, specificity, false positive rate, false negative rate, and accuracy of classification methods. Additionally, to evaluate the performance of the classifiers, the success rates and error rates were obtained by Monte Carlo simulation, considering 100 replicas of a random partition of 70% for the training set, and the remaining for the test set. It was concluded that the boosting method applied to discriminant analysis yielded a higher sensitivity rate in regard to the trained panel, at a value of 80.63% and, hence, reduction in the rate of false negatives, at 19.37%. Thus, the boosting method may be used as a means of improving the LDA classifier for discrimination of trained tasters. Os métodos automáticos de classificação têm sido amplamente utilizados em inúmeras situações, nas quais o método boosting tem se destacado por utilizar um algoritmo de classificação que considera um conjunto de dados de treinamento e, a partir desse conjunto, constrói um classificador com versões reponderadas do conjunto de treinamento. Dada essa característica, esse trabalho tem por objetivo avaliar um experimento sensorial relacionado a testes de aceitação com cafés especiais, tendo como referência grupos de consumidores, treinados e não treinados. Ao grupo de consumidores, foram avaliadas quatro características sensoriais, tais como aroma, corpo, doçura e nota final, atribuídos a quatro tipos de cafés especiais. Com o propósito de obter uma regra de classificação que discrimine provadores treinados e não treinados, utilizaram-se a análise discriminante de Fisher convencional (LDA) e a análise de discriminante via algoritmo de boosting (Adaboost). Os critérios utilizados na comparação das duas abordagens foram sensibilidade, especificidade, taxa de falsos positivos, taxa de falsos negativos e acurácia dos métodos classificatórios. Adicionalmente, para avaliar o desempenho dos classificadores, as referidas taxas de acerto e erro foram obtidas por simulação Monte Carlo, considerando-se 100 réplicas de uma partição aleatória de 70% para a amostra de treinamento e o restante para o conjunto de teste. Concluiu-se que o método de boosting aplicado na análise discriminante proporcionou maior taxa de acerto quanto aos provadores treinados, cujo valor foi 80,63% e, consequentemente, redução na taxa de falsos negativos, cujo valor foi 19,37%. Dessa forma, o método de boosting pode ser utilizado como uma forma de aperfeiçoar o classificador LDA para a discriminação de provadores treinados. UEL2015-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/1865510.5433/1679-0359.2015v36n6p3671Semina: Ciências Agrárias; Vol. 36 No. 6 (2015); 3671-3680Semina: Ciências Agrárias; v. 36 n. 6 (2015); 3671-36801679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/18655/17450http://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessLiska, Gilberto RodriguesMenezes, Fortunato Silva deCirillo, Marcelo AngeloBorém, Flávio MeiraCortez, Ricardo MiguelRibeiro, Diego Egídio2022-12-02T16:28:22Zoai:ojs.pkp.sfu.ca:article/18655Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-12-02T16:28:22Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
Avaliação de painéis sensoriais com consumidores de bebidas de cafés especiais utilizando o método boosting na análise discriminante
title Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
spellingShingle Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
Liska, Gilberto Rodrigues
Sensory analysis
Adaboosting
Coffee quality
Consumers.
Análise sensorial
Adaboosting
Qualidade de cafés
Consumidores.
title_short Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
title_full Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
title_fullStr Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
title_full_unstemmed Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
title_sort Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis
author Liska, Gilberto Rodrigues
author_facet Liska, Gilberto Rodrigues
Menezes, Fortunato Silva de
Cirillo, Marcelo Angelo
Borém, Flávio Meira
Cortez, Ricardo Miguel
Ribeiro, Diego Egídio
author_role author
author2 Menezes, Fortunato Silva de
Cirillo, Marcelo Angelo
Borém, Flávio Meira
Cortez, Ricardo Miguel
Ribeiro, Diego Egídio
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Liska, Gilberto Rodrigues
Menezes, Fortunato Silva de
Cirillo, Marcelo Angelo
Borém, Flávio Meira
Cortez, Ricardo Miguel
Ribeiro, Diego Egídio
dc.subject.por.fl_str_mv Sensory analysis
Adaboosting
Coffee quality
Consumers.
Análise sensorial
Adaboosting
Qualidade de cafés
Consumidores.
topic Sensory analysis
Adaboosting
Coffee quality
Consumers.
Análise sensorial
Adaboosting
Qualidade de cafés
Consumidores.
description Automatic classification methods have been widely used in numerous situations and the boosting method has become known for use of a classification algorithm, which considers a set of training data and, from that set, constructs a classifier with reweighted versions of the training set. Given this characteristic, the aim of this study is to assess a sensory experiment related to acceptance tests with specialty coffees, with reference to both trained and untrained consumer groups. For the consumer group, four sensory characteristics were evaluated, such as aroma, body, sweetness, and final score, attributed to four types of specialty coffees. In order to obtain a classification rule that discriminates trained and untrained tasters, we used the conventional Fisher’s Linear Discriminant Analysis (LDA) and discriminant analysis via boosting algorithm (AdaBoost). The criteria used in the comparison of the two approaches were sensitivity, specificity, false positive rate, false negative rate, and accuracy of classification methods. Additionally, to evaluate the performance of the classifiers, the success rates and error rates were obtained by Monte Carlo simulation, considering 100 replicas of a random partition of 70% for the training set, and the remaining for the test set. It was concluded that the boosting method applied to discriminant analysis yielded a higher sensitivity rate in regard to the trained panel, at a value of 80.63% and, hence, reduction in the rate of false negatives, at 19.37%. Thus, the boosting method may be used as a means of improving the LDA classifier for discrimination of trained tasters.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/18655
10.5433/1679-0359.2015v36n6p3671
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/18655
identifier_str_mv 10.5433/1679-0359.2015v36n6p3671
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/18655/17450
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 36 No. 6 (2015); 3671-3680
Semina: Ciências Agrárias; v. 36 n. 6 (2015); 3671-3680
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306072593268736