Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica

Detalhes bibliográficos
Autor(a) principal: Pereira, Renata Imaculada Soares
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/37389
Resumo: The IoT monitoring network developed in this thesis project proposes the reduction of costs associated with hardware and software of dataloggers and commercial sensing modules that are imported, have high costs with control and data storage through proprietary software. Additionally, they have limited sensor connections with low expansion flexibility, restrictive maintenance to the manufacturer and long cable communication distances. The developed IoT network was implemented and tested in three photovoltaic (PV) plants grid connected: Fortaleza - CE, Maracanaú - CE and Cologne - Germany. The IoT monitoring network applied to PV microgeneration plants installed in different locations can be considered as the main innovation of this thesis project. The proposed IoT embedded systems are based on free software, allowing online distribution, free usage and communicate with a server in the Cloud wirelessly via WiFi. The use of open source and cross-platform (Linux, Windows® and Mac OSX) allows greater interaction and accessibility to the user. The proposal made it possible to program the ESP 32 remotely through OTA (over the air) and to store the data offline using the SPI Flash File System (SPIFSS) in the case of problems with the server or with WiFi connection. A web page called Web Monitor was developed for online data consultation and for real-time monitoring of the three plants. The temperature monitoring of individual PV modules has the objective of providing data for the analysis of electric generation efficiency and for failure detection in relation to the overheating of the PV cells. Meteorological data such as solar irradiance, ambient temperature, relative humidity and wind speed were also monitored to allow a more complete analysis of the effect of these variables on the temperature response of the modules. In the obtained results it was verified that the average daily irradiance from March to July 2018 in Fortaleza (4.9 to 5.5 kWh/m²) is higher than in Maracanaú (4.1 to 5.1 kWh/m²), resulting in greater electric generation in Fortaleza. The capacity factor (CF) of the plant in Fortaleza in June and July reached values around 21%, with a minimum of 16% in February, rainy season. In Maracanaú, the maximum FC was 17.5% in March and the lowest, 13.8% in May. The maximum wind speed in Maracanaú was 3.4 m/s in July and in Fortaleza, 0.55 m/s. The maximum monthly temperature of the PV modules in Fortaleza reached 65ºC, while in Maracanaú, 50ºC. Temperature measurements show that the edge of the PV module is 1.5ºC below the center.
id UFC-7_88a6823bda6e6d411876b6d0c1264c2c
oai_identifier_str oai:repositorio.ufc.br:riufc/37389
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaicaEngenharia elétricaInternet das coisasGeração de energia fotovoltaicaInternet of thingsMonitoring networkPhotovoltaic microgenerationThe IoT monitoring network developed in this thesis project proposes the reduction of costs associated with hardware and software of dataloggers and commercial sensing modules that are imported, have high costs with control and data storage through proprietary software. Additionally, they have limited sensor connections with low expansion flexibility, restrictive maintenance to the manufacturer and long cable communication distances. The developed IoT network was implemented and tested in three photovoltaic (PV) plants grid connected: Fortaleza - CE, Maracanaú - CE and Cologne - Germany. The IoT monitoring network applied to PV microgeneration plants installed in different locations can be considered as the main innovation of this thesis project. The proposed IoT embedded systems are based on free software, allowing online distribution, free usage and communicate with a server in the Cloud wirelessly via WiFi. The use of open source and cross-platform (Linux, Windows® and Mac OSX) allows greater interaction and accessibility to the user. The proposal made it possible to program the ESP 32 remotely through OTA (over the air) and to store the data offline using the SPI Flash File System (SPIFSS) in the case of problems with the server or with WiFi connection. A web page called Web Monitor was developed for online data consultation and for real-time monitoring of the three plants. The temperature monitoring of individual PV modules has the objective of providing data for the analysis of electric generation efficiency and for failure detection in relation to the overheating of the PV cells. Meteorological data such as solar irradiance, ambient temperature, relative humidity and wind speed were also monitored to allow a more complete analysis of the effect of these variables on the temperature response of the modules. In the obtained results it was verified that the average daily irradiance from March to July 2018 in Fortaleza (4.9 to 5.5 kWh/m²) is higher than in Maracanaú (4.1 to 5.1 kWh/m²), resulting in greater electric generation in Fortaleza. The capacity factor (CF) of the plant in Fortaleza in June and July reached values around 21%, with a minimum of 16% in February, rainy season. In Maracanaú, the maximum FC was 17.5% in March and the lowest, 13.8% in May. The maximum wind speed in Maracanaú was 3.4 m/s in July and in Fortaleza, 0.55 m/s. The maximum monthly temperature of the PV modules in Fortaleza reached 65ºC, while in Maracanaú, 50ºC. Temperature measurements show that the edge of the PV module is 1.5ºC below the center.A rede de monitoramento IoT desenvolvida no presente projeto de tese propõe a redução de custos associados ao hardware e ao software de dataloggers e módulos de sensoriamento comerciais, que são importados, de alto custo e com controle e armazenamento de dados via softwares proprietários. Adicionalmente, apresentam conexões limitadas de sensores com baixa flexibilidade de expansão, manutenção restritiva ao fabricante, além de longas distâncias de comunicação por cabo. A rede IoT desenvolvida foi implementada e testada em três plantas fotovoltaicas (FV) conectadas à rede: Fortaleza - CE, Maracanaú - CE e Colônia - Alemanha. A rede de monitoramento IoT aplicada em plantas de microgeração FV instaladas em diferentes locais, pode ser considerada como a inovação principal do presente projeto de tese. Os sistemas embarcados IoT propostos são baseados em software livre, permitindo a distribuição online, uso gratuito e se comunicam com um servidor na Nuvem de forma sem fio via WiFi. O uso de código aberto e multiplataforma (Linux, Windows® e Mac OSX) permite maior interação e acessibilidade ao usuário. A proposta permitiu realizar a programação do ESP 32 de forma remota através de OTA (over the air) e armazenar os dados de forma offline com uso do SPIFSS (SPI Flash File System) em caso de servidor fora do ar ou problema na conexão WiFi. Uma página chamada Web Monitor foi desenvolvida para consulta online dos dados e para monitoramento em tempo real das três plantas. O monitoramento de temperatura de módulos FV individuais tem o objetivo de fornecer dados para a análise de eficiência da geração elétrica e para detecção de falhas com relação a sobreaquecimento das células. Dados meteorológicos como irradiância solar, temperatura ambiente, umidade relativa do ar e velocidade do vento foram também monitorados com o intuito de possibilitar uma análise mais completa sobre o efeito destas variáveis na resposta de temperatura dos módulos. Nos resultados obtidos, a média de irradiância diária de março a julho de 2018 em Fortaleza (4,9 a 5,5 kWh/m²) é maior que em Maracanaú (4,1 a 5,1 kWh/m²), resultando em maior geração elétrica em Fortaleza. O fator de capacidade (FC) da planta de Fortaleza em junho e julho atingiu valores em torno de 21%, com mínimo de 16% em fevereiro, período chuvoso. Em Maracanaú, o máximo FC foi 17,5% em março e o mínimo, 13,8% em maio. A velocidade do vento máxima em Maracanaú foi de 3,4 m/s em julho e em Fortaleza, 0,55 m/s. A máxima temperatura mensal dos módulos FV em Fortaleza chegou a 65ºC, enquanto em Maracanaú, 50ºC. As medições da temperatura comprovam que a borda do módulo FV apresenta 1,5ºC a menos em relação ao centro.Carvalho, Paulo Cesar Marques deJucá, Sandro César SilveiraPereira, Renata Imaculada Soares2018-11-16T16:23:42Z2018-11-16T16:23:42Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPEREIRA, R. I. S. Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica. 2018. 20 f. Tese (Doutorado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/37389porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-05-10T12:57:06Zoai:repositorio.ufc.br:riufc/37389Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-05-10T12:57:06Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
title Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
spellingShingle Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
Pereira, Renata Imaculada Soares
Engenharia elétrica
Internet das coisas
Geração de energia fotovoltaica
Internet of things
Monitoring network
Photovoltaic microgeneration
title_short Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
title_full Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
title_fullStr Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
title_full_unstemmed Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
title_sort Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica
author Pereira, Renata Imaculada Soares
author_facet Pereira, Renata Imaculada Soares
author_role author
dc.contributor.none.fl_str_mv Carvalho, Paulo Cesar Marques de
Jucá, Sandro César Silveira
dc.contributor.author.fl_str_mv Pereira, Renata Imaculada Soares
dc.subject.por.fl_str_mv Engenharia elétrica
Internet das coisas
Geração de energia fotovoltaica
Internet of things
Monitoring network
Photovoltaic microgeneration
topic Engenharia elétrica
Internet das coisas
Geração de energia fotovoltaica
Internet of things
Monitoring network
Photovoltaic microgeneration
description The IoT monitoring network developed in this thesis project proposes the reduction of costs associated with hardware and software of dataloggers and commercial sensing modules that are imported, have high costs with control and data storage through proprietary software. Additionally, they have limited sensor connections with low expansion flexibility, restrictive maintenance to the manufacturer and long cable communication distances. The developed IoT network was implemented and tested in three photovoltaic (PV) plants grid connected: Fortaleza - CE, Maracanaú - CE and Cologne - Germany. The IoT monitoring network applied to PV microgeneration plants installed in different locations can be considered as the main innovation of this thesis project. The proposed IoT embedded systems are based on free software, allowing online distribution, free usage and communicate with a server in the Cloud wirelessly via WiFi. The use of open source and cross-platform (Linux, Windows® and Mac OSX) allows greater interaction and accessibility to the user. The proposal made it possible to program the ESP 32 remotely through OTA (over the air) and to store the data offline using the SPI Flash File System (SPIFSS) in the case of problems with the server or with WiFi connection. A web page called Web Monitor was developed for online data consultation and for real-time monitoring of the three plants. The temperature monitoring of individual PV modules has the objective of providing data for the analysis of electric generation efficiency and for failure detection in relation to the overheating of the PV cells. Meteorological data such as solar irradiance, ambient temperature, relative humidity and wind speed were also monitored to allow a more complete analysis of the effect of these variables on the temperature response of the modules. In the obtained results it was verified that the average daily irradiance from March to July 2018 in Fortaleza (4.9 to 5.5 kWh/m²) is higher than in Maracanaú (4.1 to 5.1 kWh/m²), resulting in greater electric generation in Fortaleza. The capacity factor (CF) of the plant in Fortaleza in June and July reached values around 21%, with a minimum of 16% in February, rainy season. In Maracanaú, the maximum FC was 17.5% in March and the lowest, 13.8% in May. The maximum wind speed in Maracanaú was 3.4 m/s in July and in Fortaleza, 0.55 m/s. The maximum monthly temperature of the PV modules in Fortaleza reached 65ºC, while in Maracanaú, 50ºC. Temperature measurements show that the edge of the PV module is 1.5ºC below the center.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-16T16:23:42Z
2018-11-16T16:23:42Z
2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PEREIRA, R. I. S. Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica. 2018. 20 f. Tese (Doutorado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
http://www.repositorio.ufc.br/handle/riufc/37389
identifier_str_mv PEREIRA, R. I. S. Rede de monitoramento IoT aplicada em plantas de microgeração fotovoltaica. 2018. 20 f. Tese (Doutorado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/37389
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1809935809776713728