Bioquímica quântica das estatinas, aspirina e anti-hipertensivos

Detalhes bibliográficos
Autor(a) principal: Costa, Roner Ferreira da
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/12543
Resumo: Cardiovascular diseases (CVDs) comprise a large spectrum of heart and blood vessels (arteries and veins) diseases, among which include coronary artery disease, heart attack, angina, acute coronary syndrome, aortic aneurysm, cardiac arrhythmias, heart failure and rheumatic heart disease. Among the major drugs used to treat CVDs are: (i) Statins, which act by inhibiting 3-hidroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the process of convention of HMG-CoA to mevalonate, one of the steps of the cholesterol biosynthesis. Observed in clinical trials that the action of statins may reduce levels of bad cholesterol (LDL) between 20% and 60%, reducing the coronary events in 1/3 the period of five years; (ii) The aspirin, with which more than 400 preparations in the U. S. and produces about 20.000 tons annually. After more than a century of clinical practice, aspirin remains the antithrombotic, antipyretic, analgesic and anti-proliferative drug most widely recommended. Its acts by blocking the hormones inflammatory prostanoids biosyntheses by inhibiting ciclooxygenase enzymes COX-1 and COX-2; (iii) the antihypertensives, for which the Converting Enzyme (ACE) is the main target (ACE inhibitors are in market for over 20 years) in order to combat the high blood pressure, which cause changes in blood vessels and heart muscle and lead to heart left ventricular hypertrophy, stroke, myocardial infarction, death sudden, kidney and heart failure, etc. Arterial Hypertension, known popularly as high blood pressure, is a disease more prevalence in the modern world. ACE acts in the regulation of pressure blood via conversion of the decapeptide angiotensin I in a potent vasopressor angiotensin II and also by the inactivation of bradykinin, being a central component of the Renin-Angiotensin-Aldosterone (RAAS), which controls blood pressure and has a strong influence on functions related to the heart and kidneys, as well as contraction of blood vessels. In This work is carried out a quantum biochemical study of statins (atorvastina, rosuvastatin, cerivastatin, mevastatina, simvastatin and fluvastatin), aspirin / bromoaspirin and antihypertensive (captopril, enalapril, lisinopril, ramipril, trandolapril and perindopril) taking advantage of the crystallographic data of binding pocket on proteins such as HMGR, COX-1 (the aspirin was simulated starting from the bromoaspirin data) and ACE, respectively. Computer simulations were performed considering the Density Functional Theory (DFT) in the local density approximation (LDA) exchange functional and PWC correlation with interaction energy between residues of limited to the protein binding pocket of radius r and drugs calculated by the method of molecular fractionation conjugate caps (MFCC). The results for statins suggest that: i) the more (less) effective are atorvastatin and rosuvastatin (simvastatin and fluvastatin), which is consistent with clinical data and values concentrations inhibitory IC 50; (ii) binding pocket at consider a radius 12 ˚A (beyond the range of 9.5 ˚A suggested by strict analysis of crystallographic data) should be considered important to residues as E665, D767, and R702 be considered so that the efficiencies of statins are properly explained. For aspirin / bromoaspirin was used a second order quantum refinement of crystallographic data to demonstrate that the interaction energy with both COX-1 is very nearly the same, which explains results experimental IC 50 similar. The existence of residues attractive and repulsive is highlighted, showing that Arg120 is residue that attracts more salicylic acid after acetylation of Ser530, followed by Ala527, Leu531, Leu359 and Ser353, on the other hand, Glu524 is the residue most effective repellent (intensity comparable to Arg120), having never before been considered important in the residue of site binding of aspirin / bromoaspirin in COX-1. Finally, in the case of antihypertensive drugs, you get what is necessary to consider radius of the binding pocket 16 ˚A to obtain the lisinopropil and ramipril (trandolapril and perindopril) present the higher (lower) interactions energies, which explains the higher (lower) inhibition constant of the same among the anti-hypertensive studied for ACE Drosophila melanogaster.
id UFC-7_db02f875712b9419af297a0e54bbe3ac
oai_identifier_str oai:repositorio.ufc.br:riufc/12543
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Bioquímica quântica das estatinas, aspirina e anti-hipertensivosFísicaBioquímica quânticaInibidores de Hidroximetilglutaril-CoA RedutasesAspirinaAnti-hipertensivosDFTFísica molecularCardiovascular diseases (CVDs) comprise a large spectrum of heart and blood vessels (arteries and veins) diseases, among which include coronary artery disease, heart attack, angina, acute coronary syndrome, aortic aneurysm, cardiac arrhythmias, heart failure and rheumatic heart disease. Among the major drugs used to treat CVDs are: (i) Statins, which act by inhibiting 3-hidroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the process of convention of HMG-CoA to mevalonate, one of the steps of the cholesterol biosynthesis. Observed in clinical trials that the action of statins may reduce levels of bad cholesterol (LDL) between 20% and 60%, reducing the coronary events in 1/3 the period of five years; (ii) The aspirin, with which more than 400 preparations in the U. S. and produces about 20.000 tons annually. After more than a century of clinical practice, aspirin remains the antithrombotic, antipyretic, analgesic and anti-proliferative drug most widely recommended. Its acts by blocking the hormones inflammatory prostanoids biosyntheses by inhibiting ciclooxygenase enzymes COX-1 and COX-2; (iii) the antihypertensives, for which the Converting Enzyme (ACE) is the main target (ACE inhibitors are in market for over 20 years) in order to combat the high blood pressure, which cause changes in blood vessels and heart muscle and lead to heart left ventricular hypertrophy, stroke, myocardial infarction, death sudden, kidney and heart failure, etc. Arterial Hypertension, known popularly as high blood pressure, is a disease more prevalence in the modern world. ACE acts in the regulation of pressure blood via conversion of the decapeptide angiotensin I in a potent vasopressor angiotensin II and also by the inactivation of bradykinin, being a central component of the Renin-Angiotensin-Aldosterone (RAAS), which controls blood pressure and has a strong influence on functions related to the heart and kidneys, as well as contraction of blood vessels. In This work is carried out a quantum biochemical study of statins (atorvastina, rosuvastatin, cerivastatin, mevastatina, simvastatin and fluvastatin), aspirin / bromoaspirin and antihypertensive (captopril, enalapril, lisinopril, ramipril, trandolapril and perindopril) taking advantage of the crystallographic data of binding pocket on proteins such as HMGR, COX-1 (the aspirin was simulated starting from the bromoaspirin data) and ACE, respectively. Computer simulations were performed considering the Density Functional Theory (DFT) in the local density approximation (LDA) exchange functional and PWC correlation with interaction energy between residues of limited to the protein binding pocket of radius r and drugs calculated by the method of molecular fractionation conjugate caps (MFCC). The results for statins suggest that: i) the more (less) effective are atorvastatin and rosuvastatin (simvastatin and fluvastatin), which is consistent with clinical data and values concentrations inhibitory IC 50; (ii) binding pocket at consider a radius 12 ˚A (beyond the range of 9.5 ˚A suggested by strict analysis of crystallographic data) should be considered important to residues as E665, D767, and R702 be considered so that the efficiencies of statins are properly explained. For aspirin / bromoaspirin was used a second order quantum refinement of crystallographic data to demonstrate that the interaction energy with both COX-1 is very nearly the same, which explains results experimental IC 50 similar. The existence of residues attractive and repulsive is highlighted, showing that Arg120 is residue that attracts more salicylic acid after acetylation of Ser530, followed by Ala527, Leu531, Leu359 and Ser353, on the other hand, Glu524 is the residue most effective repellent (intensity comparable to Arg120), having never before been considered important in the residue of site binding of aspirin / bromoaspirin in COX-1. Finally, in the case of antihypertensive drugs, you get what is necessary to consider radius of the binding pocket 16 ˚A to obtain the lisinopropil and ramipril (trandolapril and perindopril) present the higher (lower) interactions energies, which explains the higher (lower) inhibition constant of the same among the anti-hypertensive studied for ACE Drosophila melanogaster.As doenças cardiovasculares (CVDs) compreendem um amplo espectro de doenças do coração e vasos sanguíneos (artérias e veias), entre as quais se incluem a doença das artérias coronárias, o ataque cardíaco, a angina, a síndrome coronariana aguda, o aneurisma da aorta, arritmias cardíacas, a doença cardíaca congênita, a insuficiência cardíaca e a doença cardíaca reumática. Entre os principias fármacos que tratam as doenças cardiovasculares estão: (i) as estatinas, que atuam inibindo a 3-hidroxi-3-metilgluratil coenzima A (HMG-CoA) redutase no processo de conversão da HMG-CoA em mevalonato, numa das etapas da biossíntese do colesterol. Observa-se em ensaios clínicos que a ação das estatinas pode diminuir os níveis de colesterol de baixa densidade (LDL) entre 20\% e 60\%, reduzindo os eventos coronarianos em até 1/3 no período de cinco anos; (ii) a aspirina, com a qual há mais de 400 preparações nos EUA e se produz cerca de 20 mil toneladas anualmente. Após mais de um século de prática clínica, a aspirina continua sendo a droga antitrombótica, antitérmica, analgésica e antiproliferativa mais amplamente recomendada. Ela age bloqueando a biossíntese de hormônios inflamatórios prostanóides através da inibição das enzimas ciclooxigenase COX-1 e COX-2; (iii) os anti-hipertensivos, para os quais a Enzima Conversora de Angiotensina (ECA) é o principal alvo (inibidores da ECA estão no mercado a mais de 20 anos) visando o combate das pressões arteriais elevadas, que provocam alterações nos vasos sanguíneos e na musculatura do coração, e levam a hipertrofia do ventrículo esquerdo do coração, acidente vascular cerebral, infarto do miocárdio, morte súbita, insuficiências renal e cardíaca, etc. A hipertensão arterial (HTA) ou hipertensão arterial sistêmica (HAS), conhecida popularmente como pressão alta, é uma das doenças com maior prevalência no mundo moderno. A ECA atua na regulação da pressão sanguínea via conversão do decapeptídeo angiotensina I no potente vasopressor angiotensina II e também pela inativação da bradicinina, sendo componente central do Sistema Renina-Angiotensina-Aldeosterona (SRAA), que controla a pressão sanguínea e tem forte influência nas funções relacionadas ao coração e os rins, bem como na contração dos vasos sanguíneos. Nesta tese realiza-se um estudo da bioquímica quântica de estatinas (atorvastina, rosuvastatina, cerivastatina, mevastatina, sinvastatina e fluvastatina), da aspirina/bromoaspirina e de anti-hipertensivos (captopril, enalapril, lisinopril, ramipril, trandolapril e perindopril) levando-se em conta dados cristalográficos dos seus sítios de ligação nas proteínas HMGR, COX-1 (o da aspirina foi simulado partindo-se dos dados da bromoaspirina) e ECA, respectivamente. As simulações computacionais foram realizadas considerando-se a Teoria do Funcional de Densidade (DFT) na aproximação da densidade local (LDA) e funcional de troca e correlação PWC, com energia de interação entre os resíduos das proteínas circunscritos ao sítio de ligação de raio r e os fármacos calculada através do método de fracionamento molecular com capas conjugadas (MFCC). Os resultados obtidos para as estatinas sugerem que: (i) as mais (menos) eficazes são a atorvastatina e a rosuvastatina (sinvastatina e fluvastatina), o que está de acordo com a clínica e valores dos seus índices de concentrações inibitórias IC50; (ii) sítios de ligação com raios de pelo menos 12 Å (além do raio de 9,5 Å sugerido pela análise estrita de dados cristalográficos) devem ser considerados para que resíduos importantes como E665, D767, e R702 sejam considerados para que as eficiências das estatinas sejam corretamente explicadas. Para a aspirina/bromoaspirina utilizou-se um refinamento quântico de segunda ordem dos dados cristalográficos para se demonstrar que a energia de ligação de ambos com a COX-1 são aproximadamente a mesma, o que explica resultados experimentais de IC50 similares. A existência de resíduos atrativos e resulsivos é destacada, mostrando-se que Arg120 é o resíduo que mais atrai o ácido salicílico após acetilação da Ser530, seguido de Ala527, Leu531, Leu359 e Ser353; por outro lado, Glu524 é o resíduo repulsivo mais efetivo (intensidade comparável ao Arg120), nunca tendo sido antes considerado como resíduo importante no sítio de ligação da aspirina/bromoaspirina na COX-1. Finalmente, no caso dos anti-hipertensivos, obtém-se que é necessário se considerar raios do sítio de ligação de 16 Å para se obter que o lisinopropil e o ramipril (trandolapril e perindopril) apresentam as maiores (menores) energias de ligação, o que explica a maior (menor) constante de inibição dos mesmos entre os anti-hipertensivos estudados para a ACE da Drosophila melanogaster.Freire, Valder NogueiraCaetano, Ewerton Wagner SantosCosta, Roner Ferreira da2015-05-29T22:18:27Z2015-05-29T22:18:27Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfCOSTA, R. F. Bioquímica quântica das estatinas, aspirina e anti-hipertensivos. 2011. 185 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011.http://www.repositorio.ufc.br/handle/riufc/12543porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-07-31T13:45:38Zoai:repositorio.ufc.br:riufc/12543Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:24:50.391078Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
title Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
spellingShingle Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
Costa, Roner Ferreira da
Física
Bioquímica quântica
Inibidores de Hidroximetilglutaril-CoA Redutases
Aspirina
Anti-hipertensivos
DFT
Física molecular
title_short Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
title_full Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
title_fullStr Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
title_full_unstemmed Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
title_sort Bioquímica quântica das estatinas, aspirina e anti-hipertensivos
author Costa, Roner Ferreira da
author_facet Costa, Roner Ferreira da
author_role author
dc.contributor.none.fl_str_mv Freire, Valder Nogueira
Caetano, Ewerton Wagner Santos
dc.contributor.author.fl_str_mv Costa, Roner Ferreira da
dc.subject.por.fl_str_mv Física
Bioquímica quântica
Inibidores de Hidroximetilglutaril-CoA Redutases
Aspirina
Anti-hipertensivos
DFT
Física molecular
topic Física
Bioquímica quântica
Inibidores de Hidroximetilglutaril-CoA Redutases
Aspirina
Anti-hipertensivos
DFT
Física molecular
description Cardiovascular diseases (CVDs) comprise a large spectrum of heart and blood vessels (arteries and veins) diseases, among which include coronary artery disease, heart attack, angina, acute coronary syndrome, aortic aneurysm, cardiac arrhythmias, heart failure and rheumatic heart disease. Among the major drugs used to treat CVDs are: (i) Statins, which act by inhibiting 3-hidroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the process of convention of HMG-CoA to mevalonate, one of the steps of the cholesterol biosynthesis. Observed in clinical trials that the action of statins may reduce levels of bad cholesterol (LDL) between 20% and 60%, reducing the coronary events in 1/3 the period of five years; (ii) The aspirin, with which more than 400 preparations in the U. S. and produces about 20.000 tons annually. After more than a century of clinical practice, aspirin remains the antithrombotic, antipyretic, analgesic and anti-proliferative drug most widely recommended. Its acts by blocking the hormones inflammatory prostanoids biosyntheses by inhibiting ciclooxygenase enzymes COX-1 and COX-2; (iii) the antihypertensives, for which the Converting Enzyme (ACE) is the main target (ACE inhibitors are in market for over 20 years) in order to combat the high blood pressure, which cause changes in blood vessels and heart muscle and lead to heart left ventricular hypertrophy, stroke, myocardial infarction, death sudden, kidney and heart failure, etc. Arterial Hypertension, known popularly as high blood pressure, is a disease more prevalence in the modern world. ACE acts in the regulation of pressure blood via conversion of the decapeptide angiotensin I in a potent vasopressor angiotensin II and also by the inactivation of bradykinin, being a central component of the Renin-Angiotensin-Aldosterone (RAAS), which controls blood pressure and has a strong influence on functions related to the heart and kidneys, as well as contraction of blood vessels. In This work is carried out a quantum biochemical study of statins (atorvastina, rosuvastatin, cerivastatin, mevastatina, simvastatin and fluvastatin), aspirin / bromoaspirin and antihypertensive (captopril, enalapril, lisinopril, ramipril, trandolapril and perindopril) taking advantage of the crystallographic data of binding pocket on proteins such as HMGR, COX-1 (the aspirin was simulated starting from the bromoaspirin data) and ACE, respectively. Computer simulations were performed considering the Density Functional Theory (DFT) in the local density approximation (LDA) exchange functional and PWC correlation with interaction energy between residues of limited to the protein binding pocket of radius r and drugs calculated by the method of molecular fractionation conjugate caps (MFCC). The results for statins suggest that: i) the more (less) effective are atorvastatin and rosuvastatin (simvastatin and fluvastatin), which is consistent with clinical data and values concentrations inhibitory IC 50; (ii) binding pocket at consider a radius 12 ˚A (beyond the range of 9.5 ˚A suggested by strict analysis of crystallographic data) should be considered important to residues as E665, D767, and R702 be considered so that the efficiencies of statins are properly explained. For aspirin / bromoaspirin was used a second order quantum refinement of crystallographic data to demonstrate that the interaction energy with both COX-1 is very nearly the same, which explains results experimental IC 50 similar. The existence of residues attractive and repulsive is highlighted, showing that Arg120 is residue that attracts more salicylic acid after acetylation of Ser530, followed by Ala527, Leu531, Leu359 and Ser353, on the other hand, Glu524 is the residue most effective repellent (intensity comparable to Arg120), having never before been considered important in the residue of site binding of aspirin / bromoaspirin in COX-1. Finally, in the case of antihypertensive drugs, you get what is necessary to consider radius of the binding pocket 16 ˚A to obtain the lisinopropil and ramipril (trandolapril and perindopril) present the higher (lower) interactions energies, which explains the higher (lower) inhibition constant of the same among the anti-hypertensive studied for ACE Drosophila melanogaster.
publishDate 2011
dc.date.none.fl_str_mv 2011
2015-05-29T22:18:27Z
2015-05-29T22:18:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv COSTA, R. F. Bioquímica quântica das estatinas, aspirina e anti-hipertensivos. 2011. 185 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011.
http://www.repositorio.ufc.br/handle/riufc/12543
identifier_str_mv COSTA, R. F. Bioquímica quântica das estatinas, aspirina e anti-hipertensivos. 2011. 185 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011.
url http://www.repositorio.ufc.br/handle/riufc/12543
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028718627520512