Dynamic bayesian statistical models for the estimation of the origin-destination matrix

Detalhes bibliográficos
Autor(a) principal: Anselmo Ramalho Pitombeira Neto
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14698
Resumo: In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.
id UFC_859ec854aaa279f31fc9219b4a8d6407
oai_identifier_str oai:www.teses.ufc.br:9797
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDynamic bayesian statistical models for the estimation of the origin-destination matrixDynamic bayesian statistical models for the estimation of the origin-destination matrixDynamic bayesian statistical models for the estimation of the origin-destination matrix2015-06-29Carlos Felipe Grangeiro Loureiro40835227391http://lattes.cnpq.br/5441748234108694 Bruno Vieira Bertoncini00828843902http://lattes.cnpq.br/3683357029229928Francisco Moraes de Oliveira Neto75536870300http://lattes.cnpq.br/7671802407202251ClÃudio Barbieri da Cunha06398816889http://lattes.cnpq.br/5689491238283383Luis Eduardo Ximenes Carvalhohttp://lattes.cnpq.br/965672593028788387689880363http://lattes.cnpq.br/5661587413564713Anselmo Ramalho Pitombeira NetoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de Transportes-PETRANUFCBRTeoria Bayesiana de decisÃoOD matrix Estimation Bayesian statisticsENGENHARIA DE TRANSPORTESIn transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14698application/pdfinfo:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:27:58Zmail@mail.com -
dc.title.en.fl_str_mv Dynamic bayesian statistical models for the estimation of the origin-destination matrix
dc.title.alternative.en.fl_str_mv Dynamic bayesian statistical models for the estimation of the origin-destination matrix
Dynamic bayesian statistical models for the estimation of the origin-destination matrix
title Dynamic bayesian statistical models for the estimation of the origin-destination matrix
spellingShingle Dynamic bayesian statistical models for the estimation of the origin-destination matrix
Anselmo Ramalho Pitombeira Neto
Teoria Bayesiana de decisÃo
OD matrix
Estimation
Bayesian statistics
ENGENHARIA DE TRANSPORTES
title_short Dynamic bayesian statistical models for the estimation of the origin-destination matrix
title_full Dynamic bayesian statistical models for the estimation of the origin-destination matrix
title_fullStr Dynamic bayesian statistical models for the estimation of the origin-destination matrix
title_full_unstemmed Dynamic bayesian statistical models for the estimation of the origin-destination matrix
title_sort Dynamic bayesian statistical models for the estimation of the origin-destination matrix
author Anselmo Ramalho Pitombeira Neto
author_facet Anselmo Ramalho Pitombeira Neto
author_role author
dc.contributor.advisor1.fl_str_mv Carlos Felipe Grangeiro Loureiro
dc.contributor.advisor1ID.fl_str_mv 40835227391
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5441748234108694
dc.contributor.referee1.fl_str_mv Bruno Vieira Bertoncini
dc.contributor.referee1ID.fl_str_mv 00828843902
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3683357029229928
dc.contributor.referee2.fl_str_mv Francisco Moraes de Oliveira Neto
dc.contributor.referee2ID.fl_str_mv 75536870300
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7671802407202251
dc.contributor.referee3.fl_str_mv ClÃudio Barbieri da Cunha
dc.contributor.referee3ID.fl_str_mv 06398816889
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5689491238283383
dc.contributor.referee4.fl_str_mv Luis Eduardo Ximenes Carvalho
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/9656725930287883
dc.contributor.authorID.fl_str_mv 87689880363
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5661587413564713
dc.contributor.author.fl_str_mv Anselmo Ramalho Pitombeira Neto
contributor_str_mv Carlos Felipe Grangeiro Loureiro
Bruno Vieira Bertoncini
Francisco Moraes de Oliveira Neto
ClÃudio Barbieri da Cunha
Luis Eduardo Ximenes Carvalho
dc.subject.por.fl_str_mv Teoria Bayesiana de decisÃo
topic Teoria Bayesiana de decisÃo
OD matrix
Estimation
Bayesian statistics
ENGENHARIA DE TRANSPORTES
dc.subject.eng.fl_str_mv OD matrix
Estimation
Bayesian statistics
dc.subject.cnpq.fl_str_mv ENGENHARIA DE TRANSPORTES
dc.description.abstract.por.fl_txt_mv In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.
dc.description.abstract.eng.fl_txt_mv In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.
In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.
description In transportation planning, one of the first steps is to estimate the travel demand. A product of the estimation process is the so-called origin-destination matrix (OD matrix), whose entries correspond to the number of trips between pairs of zones in a geographic region in a reference time period. Traditionally, the OD matrix has been estimated through direct methods, such as home-based surveys, road-side interviews and license plate automatic recognition. These direct methods require large samples to achieve a target statistical error, which may be technically or economically infeasible. Alternatively, one can use a statistical model to indirectly estimate the OD matrix from observed traffic volumes on links of the transportation network. The first estimation models proposed in the literature assume that traffic volumes in a sequence of days are independent and identically distributed samples of a static probability distribution. Moreover, static estimation models do not allow for variations in mean OD flows or non-constant variability over time. In contrast, day-to-day dynamic models are in theory more capable of capturing underlying changes of system parameters which are only indirectly observed through variations in traffic volumes. Even so, there is still a dearth of statistical models in the literature which account for the day-today dynamic evolution of transportation systems. In this thesis, our objective is to assess the potential gains and limitations of day-to-day dynamic models for the estimation of the OD matrix based on link volumes. First, we review the main static and dynamic models available in the literature. We then describe our proposed day-to-day dynamic Bayesian model based on the theory of linear dynamic models. The proposed model is tested by means of computational experiments and compared with a static estimation model and with the generalized least squares (GLS) model. The results show some advantage in favor of dynamic models in informative scenarios, while in non-informative scenarios the performance of the models were equivalent. The experiments also indicate a significant dependence of the estimation errors on the assignment matrices.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14698
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14698
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia de Transportes-PETRAN
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295206508855296