Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/58272 |
Resumo: | Sorghum, belonging to the grass family, is the crop with the highest tolerance to environmental stress among cereals. On the other hand, corn stands out for its important position in Brazilian and world agribusiness. Recently, the expansion of agricultural technologies and innovations has made it possible to increase the efficiency of production processes. Remote sensing (SR) allows the collection of crop information in a non-destructive and remote way, through sensors on board unmanned aerial vehicles (UAV) and satellites. And in the face of a large amount of data generated each season, artificial intelligence (AI) is an efficient alternative for data analysis. Thus, the objective was to evaluate the use of remote sensing techniques and artificial intelligence models in the management of corn and sorghum crops. To estimate grain sorghum productivity under tropical conditions and define the best time to estimate productivity, terrain elevation and vegetation indices (VIs) extracted at 30, 60, 90 and 120 days after sowing (DAS) were used as input parameters for the Artificial Neural Network (ANN) with Multilayer Perceptron architecture. The model with the best performance (R2 = 0.89 and RMSE = 0.22 t ha-1) had as input the IVs CIgreen, SR, VARI, WDRVI and land elevation at 30 DAS. A high correlation (r = 0.95) was obtained between the observed yield and that estimated by the model at 30 DAS, demonstrating that this initial stage is the most suitable for estimating sorghum grain yield. Corn crop data were collected using UAV and PlanetScope satellite, combined with machine learning algorithms for plant height estimation. For this purpose, NDVI, NDRE and GNDVI IVs were calculated from orbital images, while the UAV-based height was obtained through digital elevation models (DEM). The images were obtained at 20, 29, 37, 44, 50, 61 and 71 DAS and in the same way the manual evaluations in the field. The following results were obtained: (1) plant height derived from the DEM showed a strong correlation with manual field height (r = 0.96), NDVI (r = 0.80), NDRE (r = 0.78) and GNDVI (r = 0.81). (2) The RF model performed better (R2 = 0.97 and RMSE = 14.62 cm) when using NDVI, NDRE and GNDVI as input, followed by KNN with similar precision (R2 = 0.97 and RMSE = 14 .68 cm). |
id |
UFLA_8009b2d3470d0c223a77c80e9d7663e2 |
---|---|
oai_identifier_str |
oai:localhost:1/58272 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgoRemote sensing and artificial intelligence in maize and sorghum crop managementAgricultura de precisãoInteligência artificialAprendizado de máquinaPrecision agricultureArtificial intelligenceMachine learningManejo e Tratos CulturaisSorghum, belonging to the grass family, is the crop with the highest tolerance to environmental stress among cereals. On the other hand, corn stands out for its important position in Brazilian and world agribusiness. Recently, the expansion of agricultural technologies and innovations has made it possible to increase the efficiency of production processes. Remote sensing (SR) allows the collection of crop information in a non-destructive and remote way, through sensors on board unmanned aerial vehicles (UAV) and satellites. And in the face of a large amount of data generated each season, artificial intelligence (AI) is an efficient alternative for data analysis. Thus, the objective was to evaluate the use of remote sensing techniques and artificial intelligence models in the management of corn and sorghum crops. To estimate grain sorghum productivity under tropical conditions and define the best time to estimate productivity, terrain elevation and vegetation indices (VIs) extracted at 30, 60, 90 and 120 days after sowing (DAS) were used as input parameters for the Artificial Neural Network (ANN) with Multilayer Perceptron architecture. The model with the best performance (R2 = 0.89 and RMSE = 0.22 t ha-1) had as input the IVs CIgreen, SR, VARI, WDRVI and land elevation at 30 DAS. A high correlation (r = 0.95) was obtained between the observed yield and that estimated by the model at 30 DAS, demonstrating that this initial stage is the most suitable for estimating sorghum grain yield. Corn crop data were collected using UAV and PlanetScope satellite, combined with machine learning algorithms for plant height estimation. For this purpose, NDVI, NDRE and GNDVI IVs were calculated from orbital images, while the UAV-based height was obtained through digital elevation models (DEM). The images were obtained at 20, 29, 37, 44, 50, 61 and 71 DAS and in the same way the manual evaluations in the field. The following results were obtained: (1) plant height derived from the DEM showed a strong correlation with manual field height (r = 0.96), NDVI (r = 0.80), NDRE (r = 0.78) and GNDVI (r = 0.81). (2) The RF model performed better (R2 = 0.97 and RMSE = 14.62 cm) when using NDVI, NDRE and GNDVI as input, followed by KNN with similar precision (R2 = 0.97 and RMSE = 14 .68 cm).Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)O sorgo, pertencente à família das gramíneas, é a cultura com maior tolerância à estresses ambientais entre os cereais. Por outro lado, o milho se destaca pela importante posição no agronegócio brasileiro e mundial. Recentemente, a expansão das tecnologias e inovações agrícolas, tem possibilitado o aumento de eficiência dos processos de produção. O sensoriamento remoto (SR) permite a coleta de informações da lavoura de forma não-destrutiva e remota, por meio de sensores embarcados em veículos aéreos não tripulados (UAV) e satélites. E diante de uma grande quantidade de dados gerados a cada safra, a inteligência artificial (IA) é uma alternativa eficiente para análise dos dados. Dessa forma, objetivou-se avaliar o emprego de técnicas de sensoriamento remoto e modelos de inteligência artificial no manejo das culturas de milho e sorgo. Para realizar a estimativa de produtividade de sorgo granífero em condições tropicais e definir a melhor época para estimar a produtividade, foram utilizados elevação do terreno e índices de vegetação (IVs) extraídos aos 30, 60, 90 e 120 dias após semeadura (DAS) como parâmetros de entrada para a Rede Neural Artificial (RNA) com arquitetura Multilayer Perceptron. O modelo com melhor desempenho (R2 = 0,89 e RMSE = 0,22 t ha-1) apresentava como entrada os IVs CIgreen, SR, VARI, WDRVI e elevação do terreno aos 30 DAS. Obteve-se alta correlação (r = 0,95) entre a produtividade observada e a estimada pelo modelo aos 30 DAS, demonstrando que nesse estágio inicial é o mais adequado para realizar a estimativa de produtividade de grãos de sorgo. Os dados da cultura do milho foram coletados por meio de UAV e satélite PlanetScope, combinadas com algoritmos de aprendizado de máquina para estimativa de altura de plantas. Para tanto, IVs NDVI, NDRE e GNDVI foram calculados a partir de imagens orbitais, enquanto que a altura baseada em UAV foi obtida por meio de modelos digitais de elevação (DEM). As imagens foram obtidas aos 20, 29, 37, 44, 50, 61 e 71 DAS e da mesma forma as avaliações manuais no campo. Os seguintes resultados foram obtidos: (1) a altura de planta derivada do DEM apresentou forte correlação com a altura manual de campo (r = 0,96), NDVI (r = 0,80), NDRE (r = 0,78) e GNDVI (r = 0,81). (2) O modelo de RF teve melhor desempenho (R2 = 0,97 e RMSE = 14,62 cm) quando utilizou NDVI, NDRE e GNDVI como entrada, seguido de KNN com precisão semelhante (R2 = 0,97 e RMSE = 14,68 cm).Universidade Federal de LavrasPrograma de Pós-graduação em Agronomia/FitotecniaUFLAbrasilDepartamento de AgriculturaVon Pinho, Renzo GarciaSantos, Adão Felipe dosVon Pinho, Renzo GarciaPereira, José Luiz de Andrade RezendeSilva, Rouverson Pereira daFerraz, Marcelo Araújo Junqueira2023-08-22T19:20:03Z2023-08-22T19:20:03Z2023-08-222023-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERRAZ, M. A. J. Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo. 2023. 92 p. Dissertação (Mestrado em Agronomia/Fitotecnia)–Universidade Federal de Lavras, Lavras, 2023.http://repositorio.ufla.br/jspui/handle/1/58272porAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2024-08-20T20:31:59Zoai:localhost:1/58272Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2024-08-20T20:31:59Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo Remote sensing and artificial intelligence in maize and sorghum crop management |
title |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo |
spellingShingle |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo Ferraz, Marcelo Araújo Junqueira Agricultura de precisão Inteligência artificial Aprendizado de máquina Precision agriculture Artificial intelligence Machine learning Manejo e Tratos Culturais |
title_short |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo |
title_full |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo |
title_fullStr |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo |
title_full_unstemmed |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo |
title_sort |
Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo |
author |
Ferraz, Marcelo Araújo Junqueira |
author_facet |
Ferraz, Marcelo Araújo Junqueira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Von Pinho, Renzo Garcia Santos, Adão Felipe dos Von Pinho, Renzo Garcia Pereira, José Luiz de Andrade Rezende Silva, Rouverson Pereira da |
dc.contributor.author.fl_str_mv |
Ferraz, Marcelo Araújo Junqueira |
dc.subject.por.fl_str_mv |
Agricultura de precisão Inteligência artificial Aprendizado de máquina Precision agriculture Artificial intelligence Machine learning Manejo e Tratos Culturais |
topic |
Agricultura de precisão Inteligência artificial Aprendizado de máquina Precision agriculture Artificial intelligence Machine learning Manejo e Tratos Culturais |
description |
Sorghum, belonging to the grass family, is the crop with the highest tolerance to environmental stress among cereals. On the other hand, corn stands out for its important position in Brazilian and world agribusiness. Recently, the expansion of agricultural technologies and innovations has made it possible to increase the efficiency of production processes. Remote sensing (SR) allows the collection of crop information in a non-destructive and remote way, through sensors on board unmanned aerial vehicles (UAV) and satellites. And in the face of a large amount of data generated each season, artificial intelligence (AI) is an efficient alternative for data analysis. Thus, the objective was to evaluate the use of remote sensing techniques and artificial intelligence models in the management of corn and sorghum crops. To estimate grain sorghum productivity under tropical conditions and define the best time to estimate productivity, terrain elevation and vegetation indices (VIs) extracted at 30, 60, 90 and 120 days after sowing (DAS) were used as input parameters for the Artificial Neural Network (ANN) with Multilayer Perceptron architecture. The model with the best performance (R2 = 0.89 and RMSE = 0.22 t ha-1) had as input the IVs CIgreen, SR, VARI, WDRVI and land elevation at 30 DAS. A high correlation (r = 0.95) was obtained between the observed yield and that estimated by the model at 30 DAS, demonstrating that this initial stage is the most suitable for estimating sorghum grain yield. Corn crop data were collected using UAV and PlanetScope satellite, combined with machine learning algorithms for plant height estimation. For this purpose, NDVI, NDRE and GNDVI IVs were calculated from orbital images, while the UAV-based height was obtained through digital elevation models (DEM). The images were obtained at 20, 29, 37, 44, 50, 61 and 71 DAS and in the same way the manual evaluations in the field. The following results were obtained: (1) plant height derived from the DEM showed a strong correlation with manual field height (r = 0.96), NDVI (r = 0.80), NDRE (r = 0.78) and GNDVI (r = 0.81). (2) The RF model performed better (R2 = 0.97 and RMSE = 14.62 cm) when using NDVI, NDRE and GNDVI as input, followed by KNN with similar precision (R2 = 0.97 and RMSE = 14 .68 cm). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-22T19:20:03Z 2023-08-22T19:20:03Z 2023-08-22 2023-07-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERRAZ, M. A. J. Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo. 2023. 92 p. Dissertação (Mestrado em Agronomia/Fitotecnia)–Universidade Federal de Lavras, Lavras, 2023. http://repositorio.ufla.br/jspui/handle/1/58272 |
identifier_str_mv |
FERRAZ, M. A. J. Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo. 2023. 92 p. Dissertação (Mestrado em Agronomia/Fitotecnia)–Universidade Federal de Lavras, Lavras, 2023. |
url |
http://repositorio.ufla.br/jspui/handle/1/58272 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-graduação em Agronomia/Fitotecnia UFLA brasil Departamento de Agricultura |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-graduação em Agronomia/Fitotecnia UFLA brasil Departamento de Agricultura |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815438930277826560 |