Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo

Detalhes bibliográficos
Autor(a) principal: Ferraz, Marcelo Araújo Junqueira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/58272
Resumo: Sorghum, belonging to the grass family, is the crop with the highest tolerance to environmental stress among cereals. On the other hand, corn stands out for its important position in Brazilian and world agribusiness. Recently, the expansion of agricultural technologies and innovations has made it possible to increase the efficiency of production processes. Remote sensing (SR) allows the collection of crop information in a non-destructive and remote way, through sensors on board unmanned aerial vehicles (UAV) and satellites. And in the face of a large amount of data generated each season, artificial intelligence (AI) is an efficient alternative for data analysis. Thus, the objective was to evaluate the use of remote sensing techniques and artificial intelligence models in the management of corn and sorghum crops. To estimate grain sorghum productivity under tropical conditions and define the best time to estimate productivity, terrain elevation and vegetation indices (VIs) extracted at 30, 60, 90 and 120 days after sowing (DAS) were used as input parameters for the Artificial Neural Network (ANN) with Multilayer Perceptron architecture. The model with the best performance (R2 = 0.89 and RMSE = 0.22 t ha-1) had as input the IVs CIgreen, SR, VARI, WDRVI and land elevation at 30 DAS. A high correlation (r = 0.95) was obtained between the observed yield and that estimated by the model at 30 DAS, demonstrating that this initial stage is the most suitable for estimating sorghum grain yield. Corn crop data were collected using UAV and PlanetScope satellite, combined with machine learning algorithms for plant height estimation. For this purpose, NDVI, NDRE and GNDVI IVs were calculated from orbital images, while the UAV-based height was obtained through digital elevation models (DEM). The images were obtained at 20, 29, 37, 44, 50, 61 and 71 DAS and in the same way the manual evaluations in the field. The following results were obtained: (1) plant height derived from the DEM showed a strong correlation with manual field height (r = 0.96), NDVI (r = 0.80), NDRE (r = 0.78) and GNDVI (r = 0.81). (2) The RF model performed better (R2 = 0.97 and RMSE = 14.62 cm) when using NDVI, NDRE and GNDVI as input, followed by KNN with similar precision (R2 = 0.97 and RMSE = 14 .68 cm).
id UFLA_8009b2d3470d0c223a77c80e9d7663e2
oai_identifier_str oai:localhost:1/58272
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgoRemote sensing and artificial intelligence in maize and sorghum crop managementAgricultura de precisãoInteligência artificialAprendizado de máquinaPrecision agricultureArtificial intelligenceMachine learningManejo e Tratos CulturaisSorghum, belonging to the grass family, is the crop with the highest tolerance to environmental stress among cereals. On the other hand, corn stands out for its important position in Brazilian and world agribusiness. Recently, the expansion of agricultural technologies and innovations has made it possible to increase the efficiency of production processes. Remote sensing (SR) allows the collection of crop information in a non-destructive and remote way, through sensors on board unmanned aerial vehicles (UAV) and satellites. And in the face of a large amount of data generated each season, artificial intelligence (AI) is an efficient alternative for data analysis. Thus, the objective was to evaluate the use of remote sensing techniques and artificial intelligence models in the management of corn and sorghum crops. To estimate grain sorghum productivity under tropical conditions and define the best time to estimate productivity, terrain elevation and vegetation indices (VIs) extracted at 30, 60, 90 and 120 days after sowing (DAS) were used as input parameters for the Artificial Neural Network (ANN) with Multilayer Perceptron architecture. The model with the best performance (R2 = 0.89 and RMSE = 0.22 t ha-1) had as input the IVs CIgreen, SR, VARI, WDRVI and land elevation at 30 DAS. A high correlation (r = 0.95) was obtained between the observed yield and that estimated by the model at 30 DAS, demonstrating that this initial stage is the most suitable for estimating sorghum grain yield. Corn crop data were collected using UAV and PlanetScope satellite, combined with machine learning algorithms for plant height estimation. For this purpose, NDVI, NDRE and GNDVI IVs were calculated from orbital images, while the UAV-based height was obtained through digital elevation models (DEM). The images were obtained at 20, 29, 37, 44, 50, 61 and 71 DAS and in the same way the manual evaluations in the field. The following results were obtained: (1) plant height derived from the DEM showed a strong correlation with manual field height (r = 0.96), NDVI (r = 0.80), NDRE (r = 0.78) and GNDVI (r = 0.81). (2) The RF model performed better (R2 = 0.97 and RMSE = 14.62 cm) when using NDVI, NDRE and GNDVI as input, followed by KNN with similar precision (R2 = 0.97 and RMSE = 14 .68 cm).Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)O sorgo, pertencente à família das gramíneas, é a cultura com maior tolerância à estresses ambientais entre os cereais. Por outro lado, o milho se destaca pela importante posição no agronegócio brasileiro e mundial. Recentemente, a expansão das tecnologias e inovações agrícolas, tem possibilitado o aumento de eficiência dos processos de produção. O sensoriamento remoto (SR) permite a coleta de informações da lavoura de forma não-destrutiva e remota, por meio de sensores embarcados em veículos aéreos não tripulados (UAV) e satélites. E diante de uma grande quantidade de dados gerados a cada safra, a inteligência artificial (IA) é uma alternativa eficiente para análise dos dados. Dessa forma, objetivou-se avaliar o emprego de técnicas de sensoriamento remoto e modelos de inteligência artificial no manejo das culturas de milho e sorgo. Para realizar a estimativa de produtividade de sorgo granífero em condições tropicais e definir a melhor época para estimar a produtividade, foram utilizados elevação do terreno e índices de vegetação (IVs) extraídos aos 30, 60, 90 e 120 dias após semeadura (DAS) como parâmetros de entrada para a Rede Neural Artificial (RNA) com arquitetura Multilayer Perceptron. O modelo com melhor desempenho (R2 = 0,89 e RMSE = 0,22 t ha-1) apresentava como entrada os IVs CIgreen, SR, VARI, WDRVI e elevação do terreno aos 30 DAS. Obteve-se alta correlação (r = 0,95) entre a produtividade observada e a estimada pelo modelo aos 30 DAS, demonstrando que nesse estágio inicial é o mais adequado para realizar a estimativa de produtividade de grãos de sorgo. Os dados da cultura do milho foram coletados por meio de UAV e satélite PlanetScope, combinadas com algoritmos de aprendizado de máquina para estimativa de altura de plantas. Para tanto, IVs NDVI, NDRE e GNDVI foram calculados a partir de imagens orbitais, enquanto que a altura baseada em UAV foi obtida por meio de modelos digitais de elevação (DEM). As imagens foram obtidas aos 20, 29, 37, 44, 50, 61 e 71 DAS e da mesma forma as avaliações manuais no campo. Os seguintes resultados foram obtidos: (1) a altura de planta derivada do DEM apresentou forte correlação com a altura manual de campo (r = 0,96), NDVI (r = 0,80), NDRE (r = 0,78) e GNDVI (r = 0,81). (2) O modelo de RF teve melhor desempenho (R2 = 0,97 e RMSE = 14,62 cm) quando utilizou NDVI, NDRE e GNDVI como entrada, seguido de KNN com precisão semelhante (R2 = 0,97 e RMSE = 14,68 cm).Universidade Federal de LavrasPrograma de Pós-graduação em Agronomia/FitotecniaUFLAbrasilDepartamento de AgriculturaVon Pinho, Renzo GarciaSantos, Adão Felipe dosVon Pinho, Renzo GarciaPereira, José Luiz de Andrade RezendeSilva, Rouverson Pereira daFerraz, Marcelo Araújo Junqueira2023-08-22T19:20:03Z2023-08-22T19:20:03Z2023-08-222023-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERRAZ, M. A. J. Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo. 2023. 92 p. Dissertação (Mestrado em Agronomia/Fitotecnia)–Universidade Federal de Lavras, Lavras, 2023.http://repositorio.ufla.br/jspui/handle/1/58272porAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2024-08-20T20:31:59Zoai:localhost:1/58272Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2024-08-20T20:31:59Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
Remote sensing and artificial intelligence in maize and sorghum crop management
title Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
spellingShingle Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
Ferraz, Marcelo Araújo Junqueira
Agricultura de precisão
Inteligência artificial
Aprendizado de máquina
Precision agriculture
Artificial intelligence
Machine learning
Manejo e Tratos Culturais
title_short Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
title_full Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
title_fullStr Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
title_full_unstemmed Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
title_sort Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo
author Ferraz, Marcelo Araújo Junqueira
author_facet Ferraz, Marcelo Araújo Junqueira
author_role author
dc.contributor.none.fl_str_mv Von Pinho, Renzo Garcia
Santos, Adão Felipe dos
Von Pinho, Renzo Garcia
Pereira, José Luiz de Andrade Rezende
Silva, Rouverson Pereira da
dc.contributor.author.fl_str_mv Ferraz, Marcelo Araújo Junqueira
dc.subject.por.fl_str_mv Agricultura de precisão
Inteligência artificial
Aprendizado de máquina
Precision agriculture
Artificial intelligence
Machine learning
Manejo e Tratos Culturais
topic Agricultura de precisão
Inteligência artificial
Aprendizado de máquina
Precision agriculture
Artificial intelligence
Machine learning
Manejo e Tratos Culturais
description Sorghum, belonging to the grass family, is the crop with the highest tolerance to environmental stress among cereals. On the other hand, corn stands out for its important position in Brazilian and world agribusiness. Recently, the expansion of agricultural technologies and innovations has made it possible to increase the efficiency of production processes. Remote sensing (SR) allows the collection of crop information in a non-destructive and remote way, through sensors on board unmanned aerial vehicles (UAV) and satellites. And in the face of a large amount of data generated each season, artificial intelligence (AI) is an efficient alternative for data analysis. Thus, the objective was to evaluate the use of remote sensing techniques and artificial intelligence models in the management of corn and sorghum crops. To estimate grain sorghum productivity under tropical conditions and define the best time to estimate productivity, terrain elevation and vegetation indices (VIs) extracted at 30, 60, 90 and 120 days after sowing (DAS) were used as input parameters for the Artificial Neural Network (ANN) with Multilayer Perceptron architecture. The model with the best performance (R2 = 0.89 and RMSE = 0.22 t ha-1) had as input the IVs CIgreen, SR, VARI, WDRVI and land elevation at 30 DAS. A high correlation (r = 0.95) was obtained between the observed yield and that estimated by the model at 30 DAS, demonstrating that this initial stage is the most suitable for estimating sorghum grain yield. Corn crop data were collected using UAV and PlanetScope satellite, combined with machine learning algorithms for plant height estimation. For this purpose, NDVI, NDRE and GNDVI IVs were calculated from orbital images, while the UAV-based height was obtained through digital elevation models (DEM). The images were obtained at 20, 29, 37, 44, 50, 61 and 71 DAS and in the same way the manual evaluations in the field. The following results were obtained: (1) plant height derived from the DEM showed a strong correlation with manual field height (r = 0.96), NDVI (r = 0.80), NDRE (r = 0.78) and GNDVI (r = 0.81). (2) The RF model performed better (R2 = 0.97 and RMSE = 14.62 cm) when using NDVI, NDRE and GNDVI as input, followed by KNN with similar precision (R2 = 0.97 and RMSE = 14 .68 cm).
publishDate 2023
dc.date.none.fl_str_mv 2023-08-22T19:20:03Z
2023-08-22T19:20:03Z
2023-08-22
2023-07-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERRAZ, M. A. J. Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo. 2023. 92 p. Dissertação (Mestrado em Agronomia/Fitotecnia)–Universidade Federal de Lavras, Lavras, 2023.
http://repositorio.ufla.br/jspui/handle/1/58272
identifier_str_mv FERRAZ, M. A. J. Sensoriamento remoto e inteligência artificial no manejo das culturas de milho e sorgo. 2023. 92 p. Dissertação (Mestrado em Agronomia/Fitotecnia)–Universidade Federal de Lavras, Lavras, 2023.
url http://repositorio.ufla.br/jspui/handle/1/58272
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-graduação em Agronomia/Fitotecnia
UFLA
brasil
Departamento de Agricultura
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-graduação em Agronomia/Fitotecnia
UFLA
brasil
Departamento de Agricultura
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815438930277826560