Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)

Detalhes bibliográficos
Autor(a) principal: João Gabriel de Oliveira Marques
Data de Publicação: 2019
Outros Autores: Antonella Lombardi Costa, Claubia Pereira Bezerra Lima
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: https://doi.org/10.1088/1755-1315/354/1/012002
http://hdl.handle.net/1843/57079
https://orcid.org/0000-0002-2445-3800
https://orcid.org/0000-0001-5999-9961
Resumo: Hydrogen (H2) is considered a clean fuel because its combustion releases heat, water and near-zero carbon emissions. This substance can be produced through many routes, including thermochemical cycles in which water molecules are splited into oxygen and hydrogen through specific chemical reactions supported by an appropriate heat source at specific temperature conditions. There are a wide variety of thermochemical cycles under development, many of them require temperatures higher than 1000°C while others, like the cycles U-Eu-Br, Mg-Cl and Cu-Cl can operate below 550°C. The reduction in the temperature levels of a thermochemical process allows the use of various energy options, facilitating H2 production. So, the main aim of the paper is to analyze hydrogen production according to the Na-O-H thermochemical process whose required heat is supplied by a Gas Turbine Modular Helium Reactor (GT-MHR), a nuclear power plant (NPP) with low cost and low carbon emissions. The Na-O-H is a fresh chemical process that can operates at temperatures close to 400°C. The system will be studied in the software Engineering Equation Solver (EES) according to the first and second laws of thermodynamics. The results indicate that such system can produce around 3.654 kg/s of H2 considering a mass flow rate of 500 kg/s of helium coolant at 850°C coming from GT-MHR.
id UFMG_79edccb0faaf9f683b20d522478598bd
oai_identifier_str oai:repositorio.ufmg.br:1843/57079
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling 2023-07-27T18:53:39Z2023-07-27T18:53:39Z2019354https://doi.org/10.1088/1755-1315/354/1/0120021755-1315http://hdl.handle.net/1843/57079https://orcid.org/0000-0002-2445-3800https://orcid.org/0000-0001-5999-9961Hydrogen (H2) is considered a clean fuel because its combustion releases heat, water and near-zero carbon emissions. This substance can be produced through many routes, including thermochemical cycles in which water molecules are splited into oxygen and hydrogen through specific chemical reactions supported by an appropriate heat source at specific temperature conditions. There are a wide variety of thermochemical cycles under development, many of them require temperatures higher than 1000°C while others, like the cycles U-Eu-Br, Mg-Cl and Cu-Cl can operate below 550°C. The reduction in the temperature levels of a thermochemical process allows the use of various energy options, facilitating H2 production. So, the main aim of the paper is to analyze hydrogen production according to the Na-O-H thermochemical process whose required heat is supplied by a Gas Turbine Modular Helium Reactor (GT-MHR), a nuclear power plant (NPP) with low cost and low carbon emissions. The Na-O-H is a fresh chemical process that can operates at temperatures close to 400°C. The system will be studied in the software Engineering Equation Solver (EES) according to the first and second laws of thermodynamics. The results indicate that such system can produce around 3.654 kg/s of H2 considering a mass flow rate of 500 kg/s of helium coolant at 850°C coming from GT-MHR.O hidrogênio (H2) é considerado um combustível limpo porque sua combustão libera calor, água e emissões de carbono quase nulas. Essa substância pode ser produzida por várias rotas, incluindo ciclos termoquímicos nos quais as moléculas de água são divididas em oxigênio e hidrogênio por meio de reações químicas específicas apoiadas por uma fonte de calor apropriada em condições de temperatura específicas. Existe uma grande variedade de ciclos termoquímicos em desenvolvimento, muitos deles requerem temperaturas superiores a 1000°C enquanto outros, como os ciclos U-Eu-Br, Mg-Cl e Cu-Cl podem operar abaixo de 550°C. A redução dos níveis de temperatura de um processo termoquímico permite a utilização de diversas opções energéticas, facilitando a produção de H2. Assim, o objetivo principal do trabalho é analisar a produção de hidrogênio de acordo com o processo termoquímico Na-O-H cujo calor requerido é fornecido por um Reator Modular de Hélio com Turbina a Gás (GT-MHR), uma usina nuclear (NPP) de baixo custo e baixas emissões de carbono. O Na-O-H é um processo químico fresco que pode operar em temperaturas próximas a 400°C. O sistema será estudado no software Engineering Equation Solver (EES) de acordo com a primeira e segunda leis da termodinâmica. Os resultados indicam que tal sistema pode produzir cerca de 3,654 kg/s de H2 considerando uma vazão mássica de 500 kg/s de hélio refrigerante a 850°C proveniente do GT-MHR.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA NUCLEARIOP Conference Series: Earth and Environmental ScienceHidrogênio - TermodinâmicaHidrogênio como combustívelReatores refrigerados a gásHydrogen productionNa-O-HGas Turbine Modular Helium ReactorGT-MHRThermochemical cycleThermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)Análise termodinâmica de um ciclo termoquímico Na-O-H acoplado a um Reator Modular de Hélio de Turbina a Gás (GTMHR)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://iopscience.iop.org/article/10.1088/1755-1315/354/1/012002João Gabriel de Oliveira MarquesAntonella Lombardi CostaClaubia Pereira Bezerra Limaapplication/pdfinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSELicense.txtLicense.txttext/plain; charset=utf-82042https://repositorio.ufmg.br/bitstream/1843/57079/1/License.txtfa505098d172de0bc8864fc1287ffe22MD51ORIGINALThermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR).pdfThermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR).pdfapplication/pdf734541https://repositorio.ufmg.br/bitstream/1843/57079/2/Thermodynamic%20analysis%20of%20a%20Na-O-H%20thermochemical%20cycle%20coupled%20to%20a%20Gas%20Turbine%20Modular%20Helium%20Reactor%20%28GTMHR%29.pdfc90ed0e9d23f10813946f5ceffa4ececMD521843/570792023-07-27 15:53:39.962oai:repositorio.ufmg.br:1843/57079TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBIERPIFJFUE9TSVTvv71SSU8gSU5TVElUVUNJT05BTCBEQSBVRk1HCiAKCkNvbSBhIGFwcmVzZW50Ye+/ve+/vW8gZGVzdGEgbGljZW7vv71hLCB2b2Pvv70gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIGFvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbu+/vW8gZXhjbHVzaXZvIGUgaXJyZXZvZ++/vXZlbCBkZSByZXByb2R1emlyIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNh77+977+9byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cu+/vW5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mg77+9dWRpbyBvdSB277+9ZGVvLgoKVm9j77+9IGRlY2xhcmEgcXVlIGNvbmhlY2UgYSBwb2zvv710aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2Pvv70gY29uY29yZGEgcXVlIG8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250Ze+/vWRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNh77+977+9byBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHvv73vv71vLgoKVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPvv71waWEgZGUgc3VhIHB1YmxpY2Hvv73vv71vIHBhcmEgZmlucyBkZSBzZWd1cmFu77+9YSwgYmFjay11cCBlIHByZXNlcnZh77+977+9by4KClZvY++/vSBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNh77+977+9byDvv70gb3JpZ2luYWwgZSBxdWUgdm9j77+9IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vu77+9YS4gVm9j77+9IHRhbWLvv71tIGRlY2xhcmEgcXVlIG8gZGVw77+9c2l0byBkZSBzdWEgcHVibGljYe+/ve+/vW8gbu+/vW8sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd177+9bS4KCkNhc28gYSBzdWEgcHVibGljYe+/ve+/vW8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY++/vSBu77+9byBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2Pvv70gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc++/vW8gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNh77+977+9bywgZSBu77+9byBmYXLvv70gcXVhbHF1ZXIgYWx0ZXJh77+977+9bywgYWzvv71tIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7vv71hLgo=Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-07-27T18:53:39Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
dc.title.alternative.pt_BR.fl_str_mv Análise termodinâmica de um ciclo termoquímico Na-O-H acoplado a um Reator Modular de Hélio de Turbina a Gás (GTMHR)
title Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
spellingShingle Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
João Gabriel de Oliveira Marques
Hydrogen production
Na-O-H
Gas Turbine Modular Helium Reactor
GT-MHR
Thermochemical cycle
Hidrogênio - Termodinâmica
Hidrogênio como combustível
Reatores refrigerados a gás
title_short Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
title_full Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
title_fullStr Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
title_full_unstemmed Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
title_sort Thermodynamic analysis of a Na-O-H thermochemical cycle coupled to a Gas Turbine Modular Helium Reactor (GTMHR)
author João Gabriel de Oliveira Marques
author_facet João Gabriel de Oliveira Marques
Antonella Lombardi Costa
Claubia Pereira Bezerra Lima
author_role author
author2 Antonella Lombardi Costa
Claubia Pereira Bezerra Lima
author2_role author
author
dc.contributor.author.fl_str_mv João Gabriel de Oliveira Marques
Antonella Lombardi Costa
Claubia Pereira Bezerra Lima
dc.subject.por.fl_str_mv Hydrogen production
Na-O-H
Gas Turbine Modular Helium Reactor
GT-MHR
Thermochemical cycle
topic Hydrogen production
Na-O-H
Gas Turbine Modular Helium Reactor
GT-MHR
Thermochemical cycle
Hidrogênio - Termodinâmica
Hidrogênio como combustível
Reatores refrigerados a gás
dc.subject.other.pt_BR.fl_str_mv Hidrogênio - Termodinâmica
Hidrogênio como combustível
Reatores refrigerados a gás
description Hydrogen (H2) is considered a clean fuel because its combustion releases heat, water and near-zero carbon emissions. This substance can be produced through many routes, including thermochemical cycles in which water molecules are splited into oxygen and hydrogen through specific chemical reactions supported by an appropriate heat source at specific temperature conditions. There are a wide variety of thermochemical cycles under development, many of them require temperatures higher than 1000°C while others, like the cycles U-Eu-Br, Mg-Cl and Cu-Cl can operate below 550°C. The reduction in the temperature levels of a thermochemical process allows the use of various energy options, facilitating H2 production. So, the main aim of the paper is to analyze hydrogen production according to the Na-O-H thermochemical process whose required heat is supplied by a Gas Turbine Modular Helium Reactor (GT-MHR), a nuclear power plant (NPP) with low cost and low carbon emissions. The Na-O-H is a fresh chemical process that can operates at temperatures close to 400°C. The system will be studied in the software Engineering Equation Solver (EES) according to the first and second laws of thermodynamics. The results indicate that such system can produce around 3.654 kg/s of H2 considering a mass flow rate of 500 kg/s of helium coolant at 850°C coming from GT-MHR.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2023-07-27T18:53:39Z
dc.date.available.fl_str_mv 2023-07-27T18:53:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/57079
dc.identifier.doi.pt_BR.fl_str_mv https://doi.org/10.1088/1755-1315/354/1/012002
dc.identifier.issn.pt_BR.fl_str_mv 1755-1315
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0002-2445-3800
https://orcid.org/0000-0001-5999-9961
url https://doi.org/10.1088/1755-1315/354/1/012002
http://hdl.handle.net/1843/57079
https://orcid.org/0000-0002-2445-3800
https://orcid.org/0000-0001-5999-9961
identifier_str_mv 1755-1315
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IOP Conference Series: Earth and Environmental Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA NUCLEAR
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/57079/1/License.txt
https://repositorio.ufmg.br/bitstream/1843/57079/2/Thermodynamic%20analysis%20of%20a%20Na-O-H%20thermochemical%20cycle%20coupled%20to%20a%20Gas%20Turbine%20Modular%20Helium%20Reactor%20%28GTMHR%29.pdf
bitstream.checksum.fl_str_mv fa505098d172de0bc8864fc1287ffe22
c90ed0e9d23f10813946f5ceffa4ecec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589180058501120