Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | http://hdl.handle.net/1843/BUOS-9MVK9F |
Resumo: | Dealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10-3 M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO2, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO2, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO2, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO2, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO2, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample. |
id |
UFMG_debe380e46ba551e2fcc7c3d8d2be92d |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/BUOS-9MVK9F |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Caracterização, estudos fundamentais e flotação de minério de ferro goethíticoMateriais e de MinasEngenharia MetalúrgicaEngenharia metalúrgicaDealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10-3 M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO2, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO2, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO2, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO2, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO2, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample.O processamento de minérios de ferro pobres e de mineralogias complexas tem se tornado uma realidade na indústria mineral. Um exemplo está nos minérios de ferro hidratados, cujos principais minerais constituintes são a hematita, a goethita, o quartzo, a gibbsita e a caulinita. A hematita martítica e a goethita geralmente apresentam contaminantes como P, Al, Si e Mn, que podem estar alojados na sua estrutura cristalina ou nos poros do mineral, além da PPC, que implica na redução do teor de Fe no concentrado final. No presente trabalho realizou-se a caracterização de um minério de ferro hidratado de baixo teor (37,38% Fe, 42,79% SiO2 e 3,46% PPC) pelas técnicas de DRX, FRX, análise química via úmida, MOLR, MEV, EDS, medida de área superficial específica (BET) e porosimetria (BJH) por adsorção gasosa, picnometria a gás hélio, TG e DSC. Em seguida, foram realizados estudos fundamentais de microeletroforese (potencial zeta) e microflotação em tubo de Hallimond com minerais puros. Os PIEs obtidos para a hematita, goethita, gibbsita e caulinita em NaCl 10-3 M foram, respectivamente, 6,8; 8,2; 9,2 e 4,9. Os PIEs da hematita, da goethita e da gibbsita caíram para 4,2; 5,4 e 6,3 na presença de oleato de sódio e 4,9; 6,6 e 7,2 na presença de hidroxamato AERO 6493. Na microflotação, observou-se elevada flotabilidade para os minerais hematita, goethita e gibbsita com os dois reagentes coletores. Com oleato de sódio, identificou-se uma janela de seletividade entre hematita e goethita entre pH 5,0 e 6,0. Quartzo e caulinita apresentaram flotabilidade inferior a 15% com os dois coletores. Aumentos no tempo de condicionamento e na temperatura elevaram a flotabilidade da hematita e da goethita. As flotabilidades da gibbsita, do quartzo e da caulinita caíram com o aumento da temperatura no sistema hidroxamato AERO 6493. Os depressores amido de milho, fluorsilicato de sódio e Floatan M3 se mostraram ineficientes. Por fim, foram realizados ensaios de flotação em bancada com o minério nas frações grossa (-0,150+0,045 mm) e fina (-0,045+0,010 mm). Obteve-se, com oleato de sódio, concentrado com 44,69%Fe, 32,92% SiO2, 2,97% PPC, 89,34% de recuperação de Fe e IS = 2,52, para a fração grossa, e 61,10% Fe, 7,91% SiO2, 4,18 PPC, 5,09% de recuperação de Fe e IS = 1,83 para a fração fina. No sistema hidroxamato AERO 6493, alcançou-se concentrado com 46,77% Fe, 27,41% SiO2, 5,50% PPC, 66,98% de recuperação de Fe e IS = 1,41, para a fração grossa, e 60,21% Fe, 9,31% SiO2, 4,05% PPC, 32,23% de recuperação de Fe e IS = 1,92 na fração fina. No sistema de flotação catiônica reversa atingiu-se 63,75% Fe, 2,93% SiO2, 5,88% PPC, 74,98% de recuperação de Fe e IS = 9,86, na fração grossa, e 64,39% Fe, 2,15% SiO2, 5,14% PPC, 81,05% de recuperação de Fe e IS = 8,15, na fração fina.Universidade Federal de Minas GeraisUFMGAntonio Eduardo Clark PeresPaulo Roberto Gomes BrandaoAndréia Bicalho HenriquesRodrigo Lambert OréficeGilberto Rodrigues da Silva2019-08-13T19:03:49Z2019-08-13T19:03:49Z2014-06-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/BUOS-9MVK9Finfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-08-13T19:03:49Zoai:repositorio.ufmg.br:1843/BUOS-9MVK9FRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-08-13T19:03:49Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
title |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
spellingShingle |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico Gilberto Rodrigues da Silva Materiais e de Minas Engenharia Metalúrgica Engenharia metalúrgica |
title_short |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
title_full |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
title_fullStr |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
title_full_unstemmed |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
title_sort |
Caracterização, estudos fundamentais e flotação de minério de ferro goethítico |
author |
Gilberto Rodrigues da Silva |
author_facet |
Gilberto Rodrigues da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Antonio Eduardo Clark Peres Paulo Roberto Gomes Brandao Andréia Bicalho Henriques Rodrigo Lambert Oréfice |
dc.contributor.author.fl_str_mv |
Gilberto Rodrigues da Silva |
dc.subject.por.fl_str_mv |
Materiais e de Minas Engenharia Metalúrgica Engenharia metalúrgica |
topic |
Materiais e de Minas Engenharia Metalúrgica Engenharia metalúrgica |
description |
Dealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10-3 M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO2, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO2, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO2, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO2, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO2, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-22 2019-08-13T19:03:49Z 2019-08-13T19:03:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1843/BUOS-9MVK9F |
url |
http://hdl.handle.net/1843/BUOS-9MVK9F |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1816829549104594944 |