Caracterização, estudos fundamentais e flotação de minério de ferro goethítico

Detalhes bibliográficos
Autor(a) principal: Gilberto Rodrigues da Silva
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/BUOS-9MVK9F
Resumo: Dealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10-3 M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO2, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO2, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO2, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO2, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO2, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample.
id UFMG_debe380e46ba551e2fcc7c3d8d2be92d
oai_identifier_str oai:repositorio.ufmg.br:1843/BUOS-9MVK9F
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Caracterização, estudos fundamentais e flotação de minério de ferro goethíticoMateriais e de MinasEngenharia MetalúrgicaEngenharia metalúrgicaDealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10-3 M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO2, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO2, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO2, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO2, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO2, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample.O processamento de minérios de ferro pobres e de mineralogias complexas tem se tornado uma realidade na indústria mineral. Um exemplo está nos minérios de ferro hidratados, cujos principais minerais constituintes são a hematita, a goethita, o quartzo, a gibbsita e a caulinita. A hematita martítica e a goethita geralmente apresentam contaminantes como P, Al, Si e Mn, que podem estar alojados na sua estrutura cristalina ou nos poros do mineral, além da PPC, que implica na redução do teor de Fe no concentrado final. No presente trabalho realizou-se a caracterização de um minério de ferro hidratado de baixo teor (37,38% Fe, 42,79% SiO2 e 3,46% PPC) pelas técnicas de DRX, FRX, análise química via úmida, MOLR, MEV, EDS, medida de área superficial específica (BET) e porosimetria (BJH) por adsorção gasosa, picnometria a gás hélio, TG e DSC. Em seguida, foram realizados estudos fundamentais de microeletroforese (potencial zeta) e microflotação em tubo de Hallimond com minerais puros. Os PIEs obtidos para a hematita, goethita, gibbsita e caulinita em NaCl 10-3 M foram, respectivamente, 6,8; 8,2; 9,2 e 4,9. Os PIEs da hematita, da goethita e da gibbsita caíram para 4,2; 5,4 e 6,3 na presença de oleato de sódio e 4,9; 6,6 e 7,2 na presença de hidroxamato AERO 6493. Na microflotação, observou-se elevada flotabilidade para os minerais hematita, goethita e gibbsita com os dois reagentes coletores. Com oleato de sódio, identificou-se uma janela de seletividade entre hematita e goethita entre pH 5,0 e 6,0. Quartzo e caulinita apresentaram flotabilidade inferior a 15% com os dois coletores. Aumentos no tempo de condicionamento e na temperatura elevaram a flotabilidade da hematita e da goethita. As flotabilidades da gibbsita, do quartzo e da caulinita caíram com o aumento da temperatura no sistema hidroxamato AERO 6493. Os depressores amido de milho, fluorsilicato de sódio e Floatan M3 se mostraram ineficientes. Por fim, foram realizados ensaios de flotação em bancada com o minério nas frações grossa (-0,150+0,045 mm) e fina (-0,045+0,010 mm). Obteve-se, com oleato de sódio, concentrado com 44,69%Fe, 32,92% SiO2, 2,97% PPC, 89,34% de recuperação de Fe e IS = 2,52, para a fração grossa, e 61,10% Fe, 7,91% SiO2, 4,18 PPC, 5,09% de recuperação de Fe e IS = 1,83 para a fração fina. No sistema hidroxamato AERO 6493, alcançou-se concentrado com 46,77% Fe, 27,41% SiO2, 5,50% PPC, 66,98% de recuperação de Fe e IS = 1,41, para a fração grossa, e 60,21% Fe, 9,31% SiO2, 4,05% PPC, 32,23% de recuperação de Fe e IS = 1,92 na fração fina. No sistema de flotação catiônica reversa atingiu-se 63,75% Fe, 2,93% SiO2, 5,88% PPC, 74,98% de recuperação de Fe e IS = 9,86, na fração grossa, e 64,39% Fe, 2,15% SiO2, 5,14% PPC, 81,05% de recuperação de Fe e IS = 8,15, na fração fina.Universidade Federal de Minas GeraisUFMGAntonio Eduardo Clark PeresPaulo Roberto Gomes BrandaoAndréia Bicalho HenriquesRodrigo Lambert OréficeGilberto Rodrigues da Silva2019-08-13T19:03:49Z2019-08-13T19:03:49Z2014-06-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/BUOS-9MVK9Finfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-08-13T19:03:49Zoai:repositorio.ufmg.br:1843/BUOS-9MVK9FRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-08-13T19:03:49Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
title Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
spellingShingle Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
Gilberto Rodrigues da Silva
Materiais e de Minas
Engenharia Metalúrgica
Engenharia metalúrgica
title_short Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
title_full Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
title_fullStr Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
title_full_unstemmed Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
title_sort Caracterização, estudos fundamentais e flotação de minério de ferro goethítico
author Gilberto Rodrigues da Silva
author_facet Gilberto Rodrigues da Silva
author_role author
dc.contributor.none.fl_str_mv Antonio Eduardo Clark Peres
Paulo Roberto Gomes Brandao
Andréia Bicalho Henriques
Rodrigo Lambert Oréfice
dc.contributor.author.fl_str_mv Gilberto Rodrigues da Silva
dc.subject.por.fl_str_mv Materiais e de Minas
Engenharia Metalúrgica
Engenharia metalúrgica
topic Materiais e de Minas
Engenharia Metalúrgica
Engenharia metalúrgica
description Dealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10-3 M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO2, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO2, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO2, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO2, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO2, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-22
2019-08-13T19:03:49Z
2019-08-13T19:03:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/BUOS-9MVK9F
url http://hdl.handle.net/1843/BUOS-9MVK9F
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1816829549104594944