AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/5796 |
Resumo: | Tuberculosis and bovine brucellosis are important diseases for cattle farming in Brazil, given the economic impacts due to the sacrifice of positive animals, condemnation of products of animal origin and the risk to public health. In addition, B. abortus and M. bovis are very resistant microorganisms in the environment, which facilitates their dissemination. The National Program for the Control and Eradication of Brucellosis and Tuberculosis (PNCEBT) promotes vaccination against brucellosis, diagnostic tests for B. abortus and M. bovis, sacrifice or sanitary slaughter of positive animals and voluntary adherence actions with the purpose of promoting the prevention and control of these diseases. However, the tests currently employed may have some specificity and/or sensitivity problems, or demand for a complex laboratory structure, high cost and excessive execution time. Thus, research on methods based on spectroscopy such as FTIR, UV-Vis and others is justified, which associated with multivariate analysis methods and machine learning algorithms have shown to be promising in the diagnosis of diseases, presenting indices acceptable sensitivity-specificity, lower costs and faster results. Thus, the UV (Ultraviolet) method associated with machine learning was evaluated in this research for the diagnosis of brucellosis and tuberculosis in cattle. The UV methodology was evaluated for both diseases, with different antigens (B. abortus antigen for serum agglutination test; recombinant antigens P27, MPB83 and MPB70 of M. bovis). A total of 106 bovine serum samples (53 positive and 53 negative) for brucellosis and 88 samples (44 positive and 44 negative) for tuberculosis were used. The antigen-serum ratios were evaluated for each antigen, and it was identified, through principal component analysis (PCA), that the ratio 1:1 for brucellosis and, 1:16 (MPB83), 1:2 (MPB70) and 1:2 (P27), for tuberculosis, showed better separation of positives and negatives. Furthermore, with the proportion defined, the collection of the UV spectra of the total samples was carried out. Then the spectra were submitted to principal component analysis in order to observe the tendency of cluster formation. For brucellosis, no clustering tendency was observed, while for tuberculosis, only the P27 antigen showed good clustering results. Finally, using machine learning algorithms, an overall accuracy of 92.5% for brucellosis and 96.3% for tuberculosis (using P27 antigen) was achieved. |
id |
UFMS_58a4612c2ba7b0c9738e3e7ac719359c |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/5796 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2023-04-10T17:26:15Z2023-04-10T17:26:15Z2023https://repositorio.ufms.br/handle/123456789/5796Tuberculosis and bovine brucellosis are important diseases for cattle farming in Brazil, given the economic impacts due to the sacrifice of positive animals, condemnation of products of animal origin and the risk to public health. In addition, B. abortus and M. bovis are very resistant microorganisms in the environment, which facilitates their dissemination. The National Program for the Control and Eradication of Brucellosis and Tuberculosis (PNCEBT) promotes vaccination against brucellosis, diagnostic tests for B. abortus and M. bovis, sacrifice or sanitary slaughter of positive animals and voluntary adherence actions with the purpose of promoting the prevention and control of these diseases. However, the tests currently employed may have some specificity and/or sensitivity problems, or demand for a complex laboratory structure, high cost and excessive execution time. Thus, research on methods based on spectroscopy such as FTIR, UV-Vis and others is justified, which associated with multivariate analysis methods and machine learning algorithms have shown to be promising in the diagnosis of diseases, presenting indices acceptable sensitivity-specificity, lower costs and faster results. Thus, the UV (Ultraviolet) method associated with machine learning was evaluated in this research for the diagnosis of brucellosis and tuberculosis in cattle. The UV methodology was evaluated for both diseases, with different antigens (B. abortus antigen for serum agglutination test; recombinant antigens P27, MPB83 and MPB70 of M. bovis). A total of 106 bovine serum samples (53 positive and 53 negative) for brucellosis and 88 samples (44 positive and 44 negative) for tuberculosis were used. The antigen-serum ratios were evaluated for each antigen, and it was identified, through principal component analysis (PCA), that the ratio 1:1 for brucellosis and, 1:16 (MPB83), 1:2 (MPB70) and 1:2 (P27), for tuberculosis, showed better separation of positives and negatives. Furthermore, with the proportion defined, the collection of the UV spectra of the total samples was carried out. Then the spectra were submitted to principal component analysis in order to observe the tendency of cluster formation. For brucellosis, no clustering tendency was observed, while for tuberculosis, only the P27 antigen showed good clustering results. Finally, using machine learning algorithms, an overall accuracy of 92.5% for brucellosis and 96.3% for tuberculosis (using P27 antigen) was achieved.A tuberculose e a brucelose bovina são doenças importantes no cenário da bovinocultura do país, haja vista os impactos econômicos devido ao sacrifício de animais positivos, condenação de produtos de origem animal e o risco à saúde pública. Ademais, B. abortus e M. bovis são microrganismos muito resistentes no ambiente o que facilita a sua disseminação. O Programa Nacional de Controle e Erradicação de Brucelose e Tuberculose (PNCEBT) promove além de vacinação para brucelose, testes de diagnóstico para B. abortus e M. bovis, sacrifício ou abate sanitário de animais positivos e ações de adesão voluntária com a finalidade de fomentar a prevenção e controle destas doenças. Entretanto, os testes atualmente empregados podem apresentar alguns problemas seja de especificidade e ou sensibilidade, ou demanda de estrutura laboratorial complexa, alto custo e demora no tempo de execução. Dessa forma, justifica-se as pesquisas por métodos baseados em espectroscopia como FTIR, UV-Vis e outras, que associadas a métodos de análise multivariada e algoritmos de aprendizado de máquina (machine learning) têm demonstrado serem promissoras no diagnóstico de doenças, apresentando índices de sensibilidade-especificidade aceitáveis, custos mais baixos e rapidez na obtenção de resultados. Dessa forma, foi avaliado nessa pesquisa o método UV (Ultra violeta), associado ao aprendizado de máquina, para diagnóstico de brucelose e tuberculose em bovinos. Avaliou-se a metodologia de UV para ambas as enfermidades, com diferentes antígenos (antígeno de B. abortus para soroaglutinação lenta Tecpar®; antígenos recombinantes P27, MPB83 e MPB70 de M. bovis). Foram utilizados um total de 106 amostras de soro bovino (53 positivas e 53 negativas) para brucelose, e 88 amostras (44 positivas e 44 negativas) para tuberculose. As proporções de antígeno-soro foram avaliadas para cada antígeno e identificou-se, por meio da análise de componentes principais (PCA), que a proporção 1:1 para brucelose e, 1:16 (MPB83), 1:2 (MPB70) e 1:2 (P27), para tuberculose, apresentaram melhor separação de positivos e negativos. Ademais, com a proporção definida, foi realizado a coleta dos espectros UV do total de amostras. Em seguida os espectros foram submetidos a análise de componentes principais com o objetivo de observar a tendência da formação de agrupamentos, sendo que para brucelose, não apresentou nenhuma tendência de agrupamento, enquanto para tuberculose, somente o antígeno P27 apresentou bons resultados de agrupamento. Finalmente, usando algoritmos de aprendizado de máquina, foi alcançada uma acurácia geral de 92,5% para brucelose e 96,3% para tuberculose (usando antígeno P27).Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilDiagnóstico, Sorologia, Bovino, Aprendizado de máquinaAVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCarlos Alberto do Nascimento RamosBRUNO SILVA DE REZENDEinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALDissertação final..pdfDissertação final..pdfapplication/pdf1236179https://repositorio.ufms.br/bitstream/123456789/5796/-1/Disserta%c3%a7%c3%a3o%20final..pdf2f07cdbe2bcbe0c171dece10470928d4MD5-1123456789/57962023-04-10 13:26:17.418oai:repositorio.ufms.br:123456789/5796Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242023-04-10T17:26:17Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
title |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
spellingShingle |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS BRUNO SILVA DE REZENDE Diagnóstico, Sorologia, Bovino, Aprendizado de máquina |
title_short |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
title_full |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
title_fullStr |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
title_full_unstemmed |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
title_sort |
AVALIAÇÃO DE TÉCNICA DE ESPECTROSCOPIA ÓPTICA E APRENDIZADO DE MÁQUINA PARA DIAGNÓSTICO SOROLÓGICO DE Brucella abortus E Mycobacterium bovis EM BOVINOS |
author |
BRUNO SILVA DE REZENDE |
author_facet |
BRUNO SILVA DE REZENDE |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Carlos Alberto do Nascimento Ramos |
dc.contributor.author.fl_str_mv |
BRUNO SILVA DE REZENDE |
contributor_str_mv |
Carlos Alberto do Nascimento Ramos |
dc.subject.por.fl_str_mv |
Diagnóstico, Sorologia, Bovino, Aprendizado de máquina |
topic |
Diagnóstico, Sorologia, Bovino, Aprendizado de máquina |
description |
Tuberculosis and bovine brucellosis are important diseases for cattle farming in Brazil, given the economic impacts due to the sacrifice of positive animals, condemnation of products of animal origin and the risk to public health. In addition, B. abortus and M. bovis are very resistant microorganisms in the environment, which facilitates their dissemination. The National Program for the Control and Eradication of Brucellosis and Tuberculosis (PNCEBT) promotes vaccination against brucellosis, diagnostic tests for B. abortus and M. bovis, sacrifice or sanitary slaughter of positive animals and voluntary adherence actions with the purpose of promoting the prevention and control of these diseases. However, the tests currently employed may have some specificity and/or sensitivity problems, or demand for a complex laboratory structure, high cost and excessive execution time. Thus, research on methods based on spectroscopy such as FTIR, UV-Vis and others is justified, which associated with multivariate analysis methods and machine learning algorithms have shown to be promising in the diagnosis of diseases, presenting indices acceptable sensitivity-specificity, lower costs and faster results. Thus, the UV (Ultraviolet) method associated with machine learning was evaluated in this research for the diagnosis of brucellosis and tuberculosis in cattle. The UV methodology was evaluated for both diseases, with different antigens (B. abortus antigen for serum agglutination test; recombinant antigens P27, MPB83 and MPB70 of M. bovis). A total of 106 bovine serum samples (53 positive and 53 negative) for brucellosis and 88 samples (44 positive and 44 negative) for tuberculosis were used. The antigen-serum ratios were evaluated for each antigen, and it was identified, through principal component analysis (PCA), that the ratio 1:1 for brucellosis and, 1:16 (MPB83), 1:2 (MPB70) and 1:2 (P27), for tuberculosis, showed better separation of positives and negatives. Furthermore, with the proportion defined, the collection of the UV spectra of the total samples was carried out. Then the spectra were submitted to principal component analysis in order to observe the tendency of cluster formation. For brucellosis, no clustering tendency was observed, while for tuberculosis, only the P27 antigen showed good clustering results. Finally, using machine learning algorithms, an overall accuracy of 92.5% for brucellosis and 96.3% for tuberculosis (using P27 antigen) was achieved. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-04-10T17:26:15Z |
dc.date.available.fl_str_mv |
2023-04-10T17:26:15Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/5796 |
url |
https://repositorio.ufms.br/handle/123456789/5796 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/5796/-1/Disserta%c3%a7%c3%a3o%20final..pdf |
bitstream.checksum.fl_str_mv |
2f07cdbe2bcbe0c171dece10470928d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815447985500192768 |