Mathematical models to estimate cassava leaf area
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Ciências Agrárias (Belém. Online) |
Texto Completo: | https://ajaes.ufra.edu.br/index.php/ajaes/article/view/3015 |
Resumo: | The objective of this study was to determine equations that allow estimating the leaf area of cassava genotypes from biometric measurements of the leaves. Leaves of 17 cassava genotypes were collected and the length and width of the central lobe and the real leaf area were measured in each unit. The genotypes were grouped using the UPGMA multivariate analysis method, using the ratio between the length and width of the central lobe (C/L). After grouping, Pearson’s correlation test was performed between the biometric measurements and the real leaf area. Linear and potential equation models were tested for the groups found through cluster analysis. The biometric variables that showed the greatest correlation with the leaf area were the product of the length and width of the lobe and the length of the central lobe. Four different groups were found, in which the linear equation models were best adjusted when using the product between the length and width of the central lobe and the potentials when using the length of the central lobe. |
id |
UFRA_ffa277def54fceb6935045d47e08f5c1 |
---|---|
oai_identifier_str |
oai:ojs.www.periodicos.ufra.edu.br:article/3015 |
network_acronym_str |
UFRA |
network_name_str |
Revista de Ciências Agrárias (Belém. Online) |
repository_id_str |
|
spelling |
Mathematical models to estimate cassava leaf areaModelos matemáticos para a estimativa da área foliar de mandiocaLeaf modelingManihot esculenta CrantzMorphometryAgronomyplant morphologyModelagem foliarManihot esculenta CrantzMorfometriaMorfologia VegetalAgronomiaThe objective of this study was to determine equations that allow estimating the leaf area of cassava genotypes from biometric measurements of the leaves. Leaves of 17 cassava genotypes were collected and the length and width of the central lobe and the real leaf area were measured in each unit. The genotypes were grouped using the UPGMA multivariate analysis method, using the ratio between the length and width of the central lobe (C/L). After grouping, Pearson’s correlation test was performed between the biometric measurements and the real leaf area. Linear and potential equation models were tested for the groups found through cluster analysis. The biometric variables that showed the greatest correlation with the leaf area were the product of the length and width of the lobe and the length of the central lobe. Four different groups were found, in which the linear equation models were best adjusted when using the product between the length and width of the central lobe and the potentials when using the length of the central lobe.Objetivou-se com este trabalho determinar equações que possibilitem estimar a área foliar de genótipos de mandioca a partir de medidas biométricas das folhas. Foram coletadas folhas de 17 genótipos de mandioca e mensurados em cada unidade o comprimento, a largura do lóbulo central e a área foliar real. Os genótipos foram agrupados por meio do método de análise multivariada UPGMA, utilizando-se a razão entre o comprimento do lóbulo central com a largura do mesmo (C / L). Após o agrupamento foi realizado o teste de correlação de Pearson entre as medidas biométricas e a área foliar real. Foram testados modelos de equação linear e potencial para os grupos encontrados na análise de agrupamentos. As variáveis biométricas que apresentaram maior correlação com a área foliar foram o produto do comprimento e a largura do lóbulo, e o comprimento do lóbulo central. Quatro diferentes grupos foram encontrados, nos quais os modelos de equação linear se ajustaram melhor quando se aplica o produto entre o comprimento e a largura do lóbulo central e os potenciais quando se usa o comprimento do lóbulo central.Universidade Federal Rural da Amazônia/UFRA2019-07-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTextoinfo:eu-repo/semantics/otherapplication/pdfhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/3015Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCARevista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA2177-87601517-591Xreponame:Revista de Ciências Agrárias (Belém. Online)instname:Universidade Federal Rural da Amazônia (UFRA)instacron:UFRAporhttps://ajaes.ufra.edu.br/index.php/ajaes/article/view/3015/1565Copyright (c) 2019 Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciencesinfo:eu-repo/semantics/openAccessGuimarães, Miguel Julio MachadoCoelho Filho, Maurício AntônioGomes Junior, Francisco de AssisSilva, Matheus Almeida MachadoAlves, Carlos Vítor OliveiraLopes, Iug2020-01-20T14:14:53Zoai:ojs.www.periodicos.ufra.edu.br:article/3015Revistahttps://ajaes.ufra.edu.br/index.php/ajaes/PUBhttps://ajaes.ufra.edu.br/index.php/ajaes/oaiallan.lobato@ufra.edu.br || ajaes.suporte@gmail.com2177-87601517-591Xopendoar:2020-01-20T14:14:53Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA)false |
dc.title.none.fl_str_mv |
Mathematical models to estimate cassava leaf area Modelos matemáticos para a estimativa da área foliar de mandioca |
title |
Mathematical models to estimate cassava leaf area |
spellingShingle |
Mathematical models to estimate cassava leaf area Guimarães, Miguel Julio Machado Leaf modeling Manihot esculenta Crantz Morphometry Agronomy plant morphology Modelagem foliar Manihot esculenta Crantz Morfometria Morfologia Vegetal Agronomia |
title_short |
Mathematical models to estimate cassava leaf area |
title_full |
Mathematical models to estimate cassava leaf area |
title_fullStr |
Mathematical models to estimate cassava leaf area |
title_full_unstemmed |
Mathematical models to estimate cassava leaf area |
title_sort |
Mathematical models to estimate cassava leaf area |
author |
Guimarães, Miguel Julio Machado |
author_facet |
Guimarães, Miguel Julio Machado Coelho Filho, Maurício Antônio Gomes Junior, Francisco de Assis Silva, Matheus Almeida Machado Alves, Carlos Vítor Oliveira Lopes, Iug |
author_role |
author |
author2 |
Coelho Filho, Maurício Antônio Gomes Junior, Francisco de Assis Silva, Matheus Almeida Machado Alves, Carlos Vítor Oliveira Lopes, Iug |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Guimarães, Miguel Julio Machado Coelho Filho, Maurício Antônio Gomes Junior, Francisco de Assis Silva, Matheus Almeida Machado Alves, Carlos Vítor Oliveira Lopes, Iug |
dc.subject.por.fl_str_mv |
Leaf modeling Manihot esculenta Crantz Morphometry Agronomy plant morphology Modelagem foliar Manihot esculenta Crantz Morfometria Morfologia Vegetal Agronomia |
topic |
Leaf modeling Manihot esculenta Crantz Morphometry Agronomy plant morphology Modelagem foliar Manihot esculenta Crantz Morfometria Morfologia Vegetal Agronomia |
description |
The objective of this study was to determine equations that allow estimating the leaf area of cassava genotypes from biometric measurements of the leaves. Leaves of 17 cassava genotypes were collected and the length and width of the central lobe and the real leaf area were measured in each unit. The genotypes were grouped using the UPGMA multivariate analysis method, using the ratio between the length and width of the central lobe (C/L). After grouping, Pearson’s correlation test was performed between the biometric measurements and the real leaf area. Linear and potential equation models were tested for the groups found through cluster analysis. The biometric variables that showed the greatest correlation with the leaf area were the product of the length and width of the lobe and the length of the central lobe. Four different groups were found, in which the linear equation models were best adjusted when using the product between the length and width of the central lobe and the potentials when using the length of the central lobe. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Texto info:eu-repo/semantics/other |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ajaes.ufra.edu.br/index.php/ajaes/article/view/3015 |
url |
https://ajaes.ufra.edu.br/index.php/ajaes/article/view/3015 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ajaes.ufra.edu.br/index.php/ajaes/article/view/3015/1565 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural da Amazônia/UFRA |
publisher.none.fl_str_mv |
Universidade Federal Rural da Amazônia/UFRA |
dc.source.none.fl_str_mv |
Amazonian Journal of Agricultural Sciences Journal of Agricultural and Environmental Sciences; Vol 62 (2019): RCA Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences; v. 62 (2019): RCA 2177-8760 1517-591X reponame:Revista de Ciências Agrárias (Belém. Online) instname:Universidade Federal Rural da Amazônia (UFRA) instacron:UFRA |
instname_str |
Universidade Federal Rural da Amazônia (UFRA) |
instacron_str |
UFRA |
institution |
UFRA |
reponame_str |
Revista de Ciências Agrárias (Belém. Online) |
collection |
Revista de Ciências Agrárias (Belém. Online) |
repository.name.fl_str_mv |
Revista de Ciências Agrárias (Belém. Online) - Universidade Federal Rural da Amazônia (UFRA) |
repository.mail.fl_str_mv |
allan.lobato@ufra.edu.br || ajaes.suporte@gmail.com |
_version_ |
1797231629960216576 |