Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region

Detalhes bibliográficos
Autor(a) principal: dos Anjos Carvalho, Wilson
Data de Publicação: 2023
Outros Autores: Cezar Bezerra, Alan, Alba, Elisiane, Sandra bastos Souza, Luciana, Santos da Silva, Anderson, Barbosa de Albuquerque Moura, Geber
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/43387
Resumo: The State of Pernambuco covers an extensive semi-arid area where the Caatinga biome dominates. This region is characterized by long periods of drought, highlighting the need for water resource optimization. This paper aimed to compare three methods to assess reservoir changes: MapBiomas' products, the Normalized Difference Water Index (NDWI), and a support vector machine (SVM) algorithm. Initially, we obtained the monthly precipitation from 1987 to 2019 and calculated the yearly accumulation. Mapbiomas, Landsat 7 ETM, and Landsat 8 OLI data from 2012-2018 were accessed and processed using the Google Earth Engine platform. We obtained the annual image with the median pixel criterion to determine the NDWI and quantify the annual reservoir area. For the supervised classification with SVM, samples from different land-use types of the study area were used to train the algorithm. From 2012 to 2018, a reservoir reduction of 63.42% was observed with MapBiomas images, 69.49% with NDWI images, and 67.69% using the SVM algorithm. The results obtained using NDWI were the most similar to those from the artificial intelligence classification, indicating that NDWI can be used to monitor the reservoir conditions.
id UFRJ-21_21cd3f3dc3063b16c8d8625286882b2d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/43387
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid RegionLandsatGoogle Earth EngineWater resourcesThe State of Pernambuco covers an extensive semi-arid area where the Caatinga biome dominates. This region is characterized by long periods of drought, highlighting the need for water resource optimization. This paper aimed to compare three methods to assess reservoir changes: MapBiomas' products, the Normalized Difference Water Index (NDWI), and a support vector machine (SVM) algorithm. Initially, we obtained the monthly precipitation from 1987 to 2019 and calculated the yearly accumulation. Mapbiomas, Landsat 7 ETM, and Landsat 8 OLI data from 2012-2018 were accessed and processed using the Google Earth Engine platform. We obtained the annual image with the median pixel criterion to determine the NDWI and quantify the annual reservoir area. For the supervised classification with SVM, samples from different land-use types of the study area were used to train the algorithm. From 2012 to 2018, a reservoir reduction of 63.42% was observed with MapBiomas images, 69.49% with NDWI images, and 67.69% using the SVM algorithm. The results obtained using NDWI were the most similar to those from the artificial intelligence classification, indicating that NDWI can be used to monitor the reservoir conditions.Universidade Federal do Rio de Janeiro2023-02-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/4338710.11137/1982-3908_2023_46_43387Anuário do Instituto de Geociências; v. 46 (2023)Anuário do Instituto de Geociências; Vol. 46 (2023)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/43387/pdfCopyright (c) 2023 Anuário do Instituto de Geociênciasinfo:eu-repo/semantics/openAccessdos Anjos Carvalho, WilsonCezar Bezerra, AlanAlba, ElisianeSandra bastos Souza, LucianaSantos da Silva, AndersonBarbosa de Albuquerque Moura, Geber2023-02-22T15:13:51Zoai:ojs.pkp.sfu.ca:article/43387Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2023-02-22T15:13:51Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
title Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
spellingShingle Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
dos Anjos Carvalho, Wilson
Landsat
Google Earth Engine
Water resources
title_short Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
title_full Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
title_fullStr Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
title_full_unstemmed Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
title_sort Comparison Between Three Methods to Monitor Reservoir Extension in the Brazilian Semi-Arid Region
author dos Anjos Carvalho, Wilson
author_facet dos Anjos Carvalho, Wilson
Cezar Bezerra, Alan
Alba, Elisiane
Sandra bastos Souza, Luciana
Santos da Silva, Anderson
Barbosa de Albuquerque Moura, Geber
author_role author
author2 Cezar Bezerra, Alan
Alba, Elisiane
Sandra bastos Souza, Luciana
Santos da Silva, Anderson
Barbosa de Albuquerque Moura, Geber
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv dos Anjos Carvalho, Wilson
Cezar Bezerra, Alan
Alba, Elisiane
Sandra bastos Souza, Luciana
Santos da Silva, Anderson
Barbosa de Albuquerque Moura, Geber
dc.subject.por.fl_str_mv Landsat
Google Earth Engine
Water resources
topic Landsat
Google Earth Engine
Water resources
description The State of Pernambuco covers an extensive semi-arid area where the Caatinga biome dominates. This region is characterized by long periods of drought, highlighting the need for water resource optimization. This paper aimed to compare three methods to assess reservoir changes: MapBiomas' products, the Normalized Difference Water Index (NDWI), and a support vector machine (SVM) algorithm. Initially, we obtained the monthly precipitation from 1987 to 2019 and calculated the yearly accumulation. Mapbiomas, Landsat 7 ETM, and Landsat 8 OLI data from 2012-2018 were accessed and processed using the Google Earth Engine platform. We obtained the annual image with the median pixel criterion to determine the NDWI and quantify the annual reservoir area. For the supervised classification with SVM, samples from different land-use types of the study area were used to train the algorithm. From 2012 to 2018, a reservoir reduction of 63.42% was observed with MapBiomas images, 69.49% with NDWI images, and 67.69% using the SVM algorithm. The results obtained using NDWI were the most similar to those from the artificial intelligence classification, indicating that NDWI can be used to monitor the reservoir conditions.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-22
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/43387
10.11137/1982-3908_2023_46_43387
url https://revistas.ufrj.br/index.php/aigeo/article/view/43387
identifier_str_mv 10.11137/1982-3908_2023_46_43387
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/43387/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2023 Anuário do Instituto de Geociências
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Anuário do Instituto de Geociências
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; v. 46 (2023)
Anuário do Instituto de Geociências; Vol. 46 (2023)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053535652675584