The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils

Detalhes bibliográficos
Autor(a) principal: Polivanov, Helena
Data de Publicação: 2021
Outros Autores: Barroso, Emilio Velloso, Porto, Rian, Ottoni, Felipe Polivanov, Andrade, Thayssa Pereira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/42738
Resumo: The Atterberg limits are essential information and the first step in soil classification for geotechnical purposes. Established laboratoryprocedures use distilled water in the plasticity and liquid limits determination. However, saline solutions frequently interact with soilsin the construction environment through fluid percolation processes. This work aims to understand the variation of the geotechnicalbehavior of two standard materials with different mineralogical compositions (kaolinitic and smectitic) when affected by NaCl ionicsolutions in different concentrations. The purpose is to simulate different soils in environments with the presence of saline solutions.This paper reports an experimental program in which a kaolinite-rich and a smectite-rich material received NaCl solutions in threedifferent concentrations (0.6 %, 3.5 %, and 15.0 %) and had their Atterberg limits determined under these conditions. Additionally,non-contaminated samples of both materials have had their limits measured using distilled water. Physical characterization testsincluded hygroscopic moisture, grain size distribution, grain density, plastic limit (PL), and liquid limit (LL). These data allowed thedetermination of the Skempton activity index (AI), plasticity index (PI), consistency index (CI), classification of soils in the UnifiedSoil Classification System (USCS), and in the Highway Research Board (HRB) with the group index (GI). Mineralogy was determinedby X-ray diffraction and physical chemistry by measuring pH in H2O and KCl, determining the ΔpH, the point of zero-charge (PZC),and the surface electrical potential (Ψo). The results show that the pH values rise with increasing salinity, while ΔpH, PZC, Ψo, LL,AI, PI, GI decrease with increasing salinity. The PL decreases with the increase in salinity for smectite and increases for kaolinite. TheUSCS and HRB demonstrate that the materials start to behave as fewer plastic materials with increased salinity. It is concluded that thevariations in the physicochemical parameters of the environment control and modify the geotechnical behavior of the fine-grained soils.
id UFRJ-21_500f764e544553de7ba31a9a166b0db8
oai_identifier_str oai:www.revistas.ufrj.br:article/42738
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized SoilsSaline environment; Physicochemical properties; Clay mineralsThe Atterberg limits are essential information and the first step in soil classification for geotechnical purposes. Established laboratoryprocedures use distilled water in the plasticity and liquid limits determination. However, saline solutions frequently interact with soilsin the construction environment through fluid percolation processes. This work aims to understand the variation of the geotechnicalbehavior of two standard materials with different mineralogical compositions (kaolinitic and smectitic) when affected by NaCl ionicsolutions in different concentrations. The purpose is to simulate different soils in environments with the presence of saline solutions.This paper reports an experimental program in which a kaolinite-rich and a smectite-rich material received NaCl solutions in threedifferent concentrations (0.6 %, 3.5 %, and 15.0 %) and had their Atterberg limits determined under these conditions. Additionally,non-contaminated samples of both materials have had their limits measured using distilled water. Physical characterization testsincluded hygroscopic moisture, grain size distribution, grain density, plastic limit (PL), and liquid limit (LL). These data allowed thedetermination of the Skempton activity index (AI), plasticity index (PI), consistency index (CI), classification of soils in the UnifiedSoil Classification System (USCS), and in the Highway Research Board (HRB) with the group index (GI). Mineralogy was determinedby X-ray diffraction and physical chemistry by measuring pH in H2O and KCl, determining the ΔpH, the point of zero-charge (PZC),and the surface electrical potential (Ψo). The results show that the pH values rise with increasing salinity, while ΔpH, PZC, Ψo, LL,AI, PI, GI decrease with increasing salinity. The PL decreases with the increase in salinity for smectite and increases for kaolinite. TheUSCS and HRB demonstrate that the materials start to behave as fewer plastic materials with increased salinity. It is concluded that thevariations in the physicochemical parameters of the environment control and modify the geotechnical behavior of the fine-grained soils.Universidade Federal do Rio de JaneiroNational Council for Scientific and Technological Development (CNPQ)Polivanov, HelenaBarroso, Emilio VellosoPorto, RianOttoni, Felipe PolivanovAndrade, Thayssa Pereira2021-11-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/4273810.11137/1982-3908_2021_44_42738Anuário do Instituto de Geociências; Vol 44 (2021)Anuário do Instituto de Geociências; Vol 44 (2021)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/42738/pdf/*ref*/Alexakis, D., Gotsis, D. & Giakoumakis, S. 2015, 'Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district—West Greece)'. Arabian Journal of Geosciences, vol. 8, no. 3, pp. 1373–83. https://doi.org/10.1007/s12517-014-1279-0 American Society for Testing and Materials 2017, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM-D4318. 2017, American Society for Testing and Materials, Pennsylvania. Arasan, S. & Yetimoǧlu, T. 2008, 'Effect of inorganic salt solutions on the consistency limits of two clays'. Turkish Journal of Engineering and Environmental Sciences, vol. 32, no. 2, pp. 107–15. https://journals.tubitak.gov.tr/engineering/issues/muh-08-32-2/muh-32-2-5-0712-11.pdf Associação Brasileira de Normas Técnicas 2016a, Solo -. determinação do limite de liquidez, ABNT-NBR 6459. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro Associação Brasileira de Normas Técnicas 2016b, Solo — determinação do limite de plasticidade, ABNT-NBR 7181. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro. Associação Brasileira de Normas Técnicas 2016c, Amostras de solo - preparação para ensaios de compactação e ensaios de caracterização, ABNT - NBR 6457. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro. Associação Brasileira de Normas Técnicas 2016d, Solo - análise granulométrica, ABNT - NBR 7181. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro. Bekkouche, S.R., Boukhatem, G., Mendjel, D. & Benayoun, F. 2018, 'Use of salt compounds for the stabilizatıon of expansive soils'. Indian Journal of Engineering, vol. 15, pp. 250-6. https://www.discoveryjournals.org/engineering/current_issue/2018/A25.pdf Bell, L.C. & Gillman, G.P. 1978, ‘Surface charge characteristics and soil solution composition of highly weathered soils’ in C. S. Andrew & E. J. Kamprath (eds), Mineral nutrition of legumes in tropical and subtropical soils, Commonwealth Scientific and Industrial Research Organisation, Melbourne, VIC, pp. 37-57 Crevelin, L.G. & Bicalho, K.V. 2019, 'Comparison of the Casagrande and fall cone methods for liquid limit determinations in different clay soils', Revista Brasileira de Ciência do Solo, vol. 43, e0180105. https://doi.org/10.1590/18069657rbcs20180105 Elsawy, M.B.D. & Lakhouit, A. 2020, 'A review on the impact of salinity on foundation soil of coastal infrastructures and its implications to north of Red Sea coastal constructions'. Arabian Journal of Geosciences, vol. 13, no. 13, 555. https://doi.org/10.1007/s12517-020-05601-6 Empresa Brasileira de Pesquisa Agropecuária 1997, Manual de métodos de análise de solo, Rio de Janeiro Fassbender, H.W. 1980, Química de suelos con enfasis en suelos de America Latina, Instituto Interamericano de Ciências Agrícolas, São José, Costa Rica. Fontes, M.P.F., Camargo, O.A. & Sposito, G. 2001, 'Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados'. Scientia Agricola, vol. 58, no. 3, pp.627-46. https://www.scielo.br/pdf/sa/v58n3/a29v58n3.pdf Jackson, M.L. 1969, Soil Chemical Analysis - Advanced Course, 2nd edn, University of Wisconsin/Madison libraries, Madison. Keng, J.C.W. & Uehara, G. 1974, ‘Chemistry, mineralogy and taxonomy of Oxisols and Uttisols’, Soil and Crop Sciences Society Proceedings, pp. 119-26 Mansouri, H.; Jorkesh, Z.; Ajalloeian, R. & Sadeghpour, A.H. 2017, 'Investigating effects of water salinity on geotechnical properties of fine-grained soil and quartz in a sandstone case study: Ajichay project in northwest Iran', Bulletin of Engineering Geology and the Environment, vol. 76, no. 3, pp. 1117–28. https://doi.org/10.1007/s10064-016-0920-4 Mishra, A.K., Ohtsubo, M., Li, L.Y., Higashi, T. & Park, J. 2009, 'Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures'. Environmental Geology, vol. 57, no. 5, pp. 1145–53. https://doi.org/10.1007/s00254-008-1411-0 Niazi, F.S., Pinan-Llamas, A., Cholewa1, C. & Amstutz, C. 2020, 'Liquid limit determination of low to medium plasticity Indiana soils by hard base Casagrande percussion cup vs. BS fall-cone methods'. Bulletin of Engineering Geology and the Environment, vol. 79, no. 4, pp. 2141–58. https://doi.org/10.1007/s10064-019-01668-y Putra, P.P., Paramiswari, D.A., Ilham, A., & Ma’ruf, M.F. 2018, 'Expansive soil improvement of Glagahagung village, Purwoharjo sub-district, Banyuwangi district, which is chemically stabilized', 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018), MATEC Web of Conferences 195, 03009. https://doi.org/10.1051/matecconf/201819503009 R Development Core Team 2020, R: a language and environment for statistical computing, R Foundation for Statistical Computing, viewed 18 July 2020, <https://www.R-project.org/>, Vienna, Austria Rahil, F.H., Al-Soudany, K.Y.H., Abbas, N.S. & Hussein, L.Y. 2019, 'Geotechnical properties of clayey soils induced by the presence of sodium chloride'. 2nd International Conference on Sustainable Engineering Techniques (ICSET 2019), IOP Conference Series: Materials Science and Engineering, vol. 518, no.2, 022064. https://doi.org/10.1088/1757-899X/518/2/022064 Raij, B.V. & Peech, M. 1972, 'Electrochemical properties of some Oxisols and Alfisols of the tropics'. Soil Science Society of America Journal, vol. 36, no. 4, pp. 587-93. https://doi.org/10.2136/sssaj1972.03615995003600040027x Sen, P., Dixit, M. & Chitra, R. 2016, 'Effect of chemicals on index properties of soil'. International Journal of Engineering Research and General Science, vol. 4, no. 1, pp. 352–9. http://pnrsolution.org/Datacenter/Vol4/Issue1/47.pdf Shariatmadari, N., Salami, M. & Fard, M.K. 2011, 'Effect of inorganic salt solutions on some geotechnical properties of soil-bentonite mixtures as barriers', International Journal of Civil Engineering, vol. 9, no. 2, pp. 103-10. Skempton, A.W. 1953, ‘The colloidal activity of clays’, 3rd International Conference on Soil Mechanics and Foundation Engineering Proceedings, pp. 57-61. Zurich, Switzerland. https://www.issmge.org/uploads/publications/1/42/1953_01_0014.pdf Sposito, G. 2008, The chemistry of soils, Oxford University Press, New York Stadtbäummer, F.J. 1976, 'The influence of inorganic salts on some soil mechanical parameters of clays'. Bulletin of Engineering Geology and the Environment, vol. 14, no.1, pp: 65–9 Tajnin, R., Abdullah, T. & Rokonuzzaman, M.D. 2014, 'Study on the salinity and pH and its effect on geotechnical properties of soil in South-West region of Bangladesh'. International Journal of Advanced Structures and Geotechnical Engineering, vol. 3, no. 2, pp. 138-47 Uehara, G. & Gillman, G.P. 1980, 'Charge characteristics of soils with variable and permanent charge minerals: I. Theory'. Soil Science Society of America Journal, vol. 44, no. 2, pp. 250-5. https://doi.org/10.2136/sssaj1980.03615995004400020008x Wuddivira, M.N., Robinson, D.A., Lebron, I., Brechet, L., Atwell, M., De Caires, S., Oatham, M., Jones, S.B., Abdu, H., Verma, A.K. & Tuller, M. 2012, 'Estimation of soil clay content from hygroscopic water content measurements'. Soil Science Society of America Journal, vol. 76, no 5, pp. 1529-35. https://doi.org/10.2136/sssaj2012.0034 Xu, J., Li, Y., Wang, S., Wang, Q. & Ding, J. 2020, 'Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling', Bulletin of Engineering Geology and the Environment, vol. 79, no. 3, pp.1523–41. https://doi.org/10.1007/s10064-019-01646-4 Zhou, B. & Lu, N. 2021, 'Correlation between Atterberg limits and soil adsorptive water'. Journal of Geotechnical and Geoenvironmental Engineering, vol. 147, no. 2, pp. 04020162. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002463Copyright (c) 2021 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-11-23T22:14:26Zoai:www.revistas.ufrj.br:article/42738Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-11-23T22:14:26Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
title The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
spellingShingle The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
Polivanov, Helena
Saline environment; Physicochemical properties; Clay minerals
title_short The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
title_full The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
title_fullStr The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
title_full_unstemmed The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
title_sort The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils
author Polivanov, Helena
author_facet Polivanov, Helena
Barroso, Emilio Velloso
Porto, Rian
Ottoni, Felipe Polivanov
Andrade, Thayssa Pereira
author_role author
author2 Barroso, Emilio Velloso
Porto, Rian
Ottoni, Felipe Polivanov
Andrade, Thayssa Pereira
author2_role author
author
author
author
dc.contributor.none.fl_str_mv National Council for Scientific and Technological Development (CNPQ)
dc.contributor.author.fl_str_mv Polivanov, Helena
Barroso, Emilio Velloso
Porto, Rian
Ottoni, Felipe Polivanov
Andrade, Thayssa Pereira
dc.subject.por.fl_str_mv Saline environment; Physicochemical properties; Clay minerals
topic Saline environment; Physicochemical properties; Clay minerals
description The Atterberg limits are essential information and the first step in soil classification for geotechnical purposes. Established laboratoryprocedures use distilled water in the plasticity and liquid limits determination. However, saline solutions frequently interact with soilsin the construction environment through fluid percolation processes. This work aims to understand the variation of the geotechnicalbehavior of two standard materials with different mineralogical compositions (kaolinitic and smectitic) when affected by NaCl ionicsolutions in different concentrations. The purpose is to simulate different soils in environments with the presence of saline solutions.This paper reports an experimental program in which a kaolinite-rich and a smectite-rich material received NaCl solutions in threedifferent concentrations (0.6 %, 3.5 %, and 15.0 %) and had their Atterberg limits determined under these conditions. Additionally,non-contaminated samples of both materials have had their limits measured using distilled water. Physical characterization testsincluded hygroscopic moisture, grain size distribution, grain density, plastic limit (PL), and liquid limit (LL). These data allowed thedetermination of the Skempton activity index (AI), plasticity index (PI), consistency index (CI), classification of soils in the UnifiedSoil Classification System (USCS), and in the Highway Research Board (HRB) with the group index (GI). Mineralogy was determinedby X-ray diffraction and physical chemistry by measuring pH in H2O and KCl, determining the ΔpH, the point of zero-charge (PZC),and the surface electrical potential (Ψo). The results show that the pH values rise with increasing salinity, while ΔpH, PZC, Ψo, LL,AI, PI, GI decrease with increasing salinity. The PL decreases with the increase in salinity for smectite and increases for kaolinite. TheUSCS and HRB demonstrate that the materials start to behave as fewer plastic materials with increased salinity. It is concluded that thevariations in the physicochemical parameters of the environment control and modify the geotechnical behavior of the fine-grained soils.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-23
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/42738
10.11137/1982-3908_2021_44_42738
url https://revistas.ufrj.br/index.php/aigeo/article/view/42738
identifier_str_mv 10.11137/1982-3908_2021_44_42738
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/42738/pdf
/*ref*/Alexakis, D., Gotsis, D. & Giakoumakis, S. 2015, 'Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district—West Greece)'. Arabian Journal of Geosciences, vol. 8, no. 3, pp. 1373–83. https://doi.org/10.1007/s12517-014-1279-0 American Society for Testing and Materials 2017, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM-D4318. 2017, American Society for Testing and Materials, Pennsylvania. Arasan, S. & Yetimoǧlu, T. 2008, 'Effect of inorganic salt solutions on the consistency limits of two clays'. Turkish Journal of Engineering and Environmental Sciences, vol. 32, no. 2, pp. 107–15. https://journals.tubitak.gov.tr/engineering/issues/muh-08-32-2/muh-32-2-5-0712-11.pdf Associação Brasileira de Normas Técnicas 2016a, Solo -. determinação do limite de liquidez, ABNT-NBR 6459. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro Associação Brasileira de Normas Técnicas 2016b, Solo — determinação do limite de plasticidade, ABNT-NBR 7181. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro. Associação Brasileira de Normas Técnicas 2016c, Amostras de solo - preparação para ensaios de compactação e ensaios de caracterização, ABNT - NBR 6457. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro. Associação Brasileira de Normas Técnicas 2016d, Solo - análise granulométrica, ABNT - NBR 7181. 2016, Associação Brasileira de Normas Técnicas, Rio de Janeiro. Bekkouche, S.R., Boukhatem, G., Mendjel, D. & Benayoun, F. 2018, 'Use of salt compounds for the stabilizatıon of expansive soils'. Indian Journal of Engineering, vol. 15, pp. 250-6. https://www.discoveryjournals.org/engineering/current_issue/2018/A25.pdf Bell, L.C. & Gillman, G.P. 1978, ‘Surface charge characteristics and soil solution composition of highly weathered soils’ in C. S. Andrew & E. J. Kamprath (eds), Mineral nutrition of legumes in tropical and subtropical soils, Commonwealth Scientific and Industrial Research Organisation, Melbourne, VIC, pp. 37-57 Crevelin, L.G. & Bicalho, K.V. 2019, 'Comparison of the Casagrande and fall cone methods for liquid limit determinations in different clay soils', Revista Brasileira de Ciência do Solo, vol. 43, e0180105. https://doi.org/10.1590/18069657rbcs20180105 Elsawy, M.B.D. & Lakhouit, A. 2020, 'A review on the impact of salinity on foundation soil of coastal infrastructures and its implications to north of Red Sea coastal constructions'. Arabian Journal of Geosciences, vol. 13, no. 13, 555. https://doi.org/10.1007/s12517-020-05601-6 Empresa Brasileira de Pesquisa Agropecuária 1997, Manual de métodos de análise de solo, Rio de Janeiro Fassbender, H.W. 1980, Química de suelos con enfasis en suelos de America Latina, Instituto Interamericano de Ciências Agrícolas, São José, Costa Rica. Fontes, M.P.F., Camargo, O.A. & Sposito, G. 2001, 'Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados'. Scientia Agricola, vol. 58, no. 3, pp.627-46. https://www.scielo.br/pdf/sa/v58n3/a29v58n3.pdf Jackson, M.L. 1969, Soil Chemical Analysis - Advanced Course, 2nd edn, University of Wisconsin/Madison libraries, Madison. Keng, J.C.W. & Uehara, G. 1974, ‘Chemistry, mineralogy and taxonomy of Oxisols and Uttisols’, Soil and Crop Sciences Society Proceedings, pp. 119-26 Mansouri, H.; Jorkesh, Z.; Ajalloeian, R. & Sadeghpour, A.H. 2017, 'Investigating effects of water salinity on geotechnical properties of fine-grained soil and quartz in a sandstone case study: Ajichay project in northwest Iran', Bulletin of Engineering Geology and the Environment, vol. 76, no. 3, pp. 1117–28. https://doi.org/10.1007/s10064-016-0920-4 Mishra, A.K., Ohtsubo, M., Li, L.Y., Higashi, T. & Park, J. 2009, 'Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures'. Environmental Geology, vol. 57, no. 5, pp. 1145–53. https://doi.org/10.1007/s00254-008-1411-0 Niazi, F.S., Pinan-Llamas, A., Cholewa1, C. & Amstutz, C. 2020, 'Liquid limit determination of low to medium plasticity Indiana soils by hard base Casagrande percussion cup vs. BS fall-cone methods'. Bulletin of Engineering Geology and the Environment, vol. 79, no. 4, pp. 2141–58. https://doi.org/10.1007/s10064-019-01668-y Putra, P.P., Paramiswari, D.A., Ilham, A., & Ma’ruf, M.F. 2018, 'Expansive soil improvement of Glagahagung village, Purwoharjo sub-district, Banyuwangi district, which is chemically stabilized', 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018), MATEC Web of Conferences 195, 03009. https://doi.org/10.1051/matecconf/201819503009 R Development Core Team 2020, R: a language and environment for statistical computing, R Foundation for Statistical Computing, viewed 18 July 2020, <https://www.R-project.org/>, Vienna, Austria Rahil, F.H., Al-Soudany, K.Y.H., Abbas, N.S. & Hussein, L.Y. 2019, 'Geotechnical properties of clayey soils induced by the presence of sodium chloride'. 2nd International Conference on Sustainable Engineering Techniques (ICSET 2019), IOP Conference Series: Materials Science and Engineering, vol. 518, no.2, 022064. https://doi.org/10.1088/1757-899X/518/2/022064 Raij, B.V. & Peech, M. 1972, 'Electrochemical properties of some Oxisols and Alfisols of the tropics'. Soil Science Society of America Journal, vol. 36, no. 4, pp. 587-93. https://doi.org/10.2136/sssaj1972.03615995003600040027x Sen, P., Dixit, M. & Chitra, R. 2016, 'Effect of chemicals on index properties of soil'. International Journal of Engineering Research and General Science, vol. 4, no. 1, pp. 352–9. http://pnrsolution.org/Datacenter/Vol4/Issue1/47.pdf Shariatmadari, N., Salami, M. & Fard, M.K. 2011, 'Effect of inorganic salt solutions on some geotechnical properties of soil-bentonite mixtures as barriers', International Journal of Civil Engineering, vol. 9, no. 2, pp. 103-10. Skempton, A.W. 1953, ‘The colloidal activity of clays’, 3rd International Conference on Soil Mechanics and Foundation Engineering Proceedings, pp. 57-61. Zurich, Switzerland. https://www.issmge.org/uploads/publications/1/42/1953_01_0014.pdf Sposito, G. 2008, The chemistry of soils, Oxford University Press, New York Stadtbäummer, F.J. 1976, 'The influence of inorganic salts on some soil mechanical parameters of clays'. Bulletin of Engineering Geology and the Environment, vol. 14, no.1, pp: 65–9 Tajnin, R., Abdullah, T. & Rokonuzzaman, M.D. 2014, 'Study on the salinity and pH and its effect on geotechnical properties of soil in South-West region of Bangladesh'. International Journal of Advanced Structures and Geotechnical Engineering, vol. 3, no. 2, pp. 138-47 Uehara, G. & Gillman, G.P. 1980, 'Charge characteristics of soils with variable and permanent charge minerals: I. Theory'. Soil Science Society of America Journal, vol. 44, no. 2, pp. 250-5. https://doi.org/10.2136/sssaj1980.03615995004400020008x Wuddivira, M.N., Robinson, D.A., Lebron, I., Brechet, L., Atwell, M., De Caires, S., Oatham, M., Jones, S.B., Abdu, H., Verma, A.K. & Tuller, M. 2012, 'Estimation of soil clay content from hygroscopic water content measurements'. Soil Science Society of America Journal, vol. 76, no 5, pp. 1529-35. https://doi.org/10.2136/sssaj2012.0034 Xu, J., Li, Y., Wang, S., Wang, Q. & Ding, J. 2020, 'Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling', Bulletin of Engineering Geology and the Environment, vol. 79, no. 3, pp.1523–41. https://doi.org/10.1007/s10064-019-01646-4 Zhou, B. & Lu, N. 2021, 'Correlation between Atterberg limits and soil adsorptive water'. Journal of Geotechnical and Geoenvironmental Engineering, vol. 147, no. 2, pp. 04020162. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002463
dc.rights.driver.fl_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 44 (2021)
Anuário do Instituto de Geociências; Vol 44 (2021)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053537315717120