Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água

Detalhes bibliográficos
Autor(a) principal: Fleury, Fábio Barros Curado
Data de Publicação: 2021
Outros Autores: Roig, Henrique Llacer, Marotta, Giuliano Sant'Anna, Ciccerelli, Rejane Ennes, Ianniruberto, Marco
Tipo de documento: Artigo
Idioma: por
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/39716
Resumo: Modelos Digitais Topobatimétricos (MDTB) de alta resolução espacial e posicional são dados preciosos à gestão de reservatórios d’água. Para geração dessas superfícies digitais, geralmente são integrados dados derivados de LiDAR aerotransportado e ecobatímetros. A superfície digital resultante dessa interpolação apresenta tipicamente uma região de ausência (gap) de informações entre as nuvens de dados dos dois sensores em áreas submersas rasas, em função de limitações de cada um dos métodos. Esse vazio é geralmente resolvido por interpolação, se tornando uma área de valores batimétricos de precisão planialtimétrica duvidosa. Assim, o trabalho avalia o uso de fotogrametria digital com ARP (Aeronave Remotamente Pilotada) para aquisição de dados batimétricos de margens rasas de reservatórios e investiga a possibilidade de utilização da ferramenta para complementar o gap de dados do MDTB convencional. Para isso, foi avaliada a qualidade posicional da porção batimétrica do  Modelo Digital de Terreno (MDT) fotogramétrico comparativamente à dados de receptor GNSS. O MDT fotogramétrico apresentou Ground Sampling Distance (GSD) de 3,75 cm/ pixel, restituindo batimetrias com profundidades até 0,9 m, recobrindo todo o gap entre os dados de LiDAR e ecobatímetro nas regiões mais rasas que isso. Regiões mais profundas apresentaram, em média, 40% do gap recoberto. Testes de hipótese e teste de precisão do PEC mostraram que os Pontos de Verificação (PV) submersos apresentam maiores magnitudes de discrepância altimétrica do que os PV da porção seca, enquanto, planimetricamente, as discrepâncias apresentam comportamentos semelhantes. Coeficientes de correlação de Pearson e Spearman, validados por reamostragem Bootstrap com n = 1000, indicaram alta correlação entre as discrepâncias altimétricas da porção submersa do MDT fotogramétrico e a profundidade do corpo hídrico, sugerindo controle das discrepâncias por parte da refração da luz, descrita pela Lei de Snell. Encontramos que o uso da técnica como subsídio à integração topobatimétrica de reservatórios se mostra adequada, porém há de se considerar que a parte fotogramétrica do MDTB tenderá a ser mais rasa que a realidade.
id UFRJ-21_bdbd36eec8123a68014f93e9b6bdcbd0
oai_identifier_str oai:www.revistas.ufrj.br:article/39716
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’águaFotogrametria; Topobatimetria; Batimetria ÓticaModelos Digitais Topobatimétricos (MDTB) de alta resolução espacial e posicional são dados preciosos à gestão de reservatórios d’água. Para geração dessas superfícies digitais, geralmente são integrados dados derivados de LiDAR aerotransportado e ecobatímetros. A superfície digital resultante dessa interpolação apresenta tipicamente uma região de ausência (gap) de informações entre as nuvens de dados dos dois sensores em áreas submersas rasas, em função de limitações de cada um dos métodos. Esse vazio é geralmente resolvido por interpolação, se tornando uma área de valores batimétricos de precisão planialtimétrica duvidosa. Assim, o trabalho avalia o uso de fotogrametria digital com ARP (Aeronave Remotamente Pilotada) para aquisição de dados batimétricos de margens rasas de reservatórios e investiga a possibilidade de utilização da ferramenta para complementar o gap de dados do MDTB convencional. Para isso, foi avaliada a qualidade posicional da porção batimétrica do  Modelo Digital de Terreno (MDT) fotogramétrico comparativamente à dados de receptor GNSS. O MDT fotogramétrico apresentou Ground Sampling Distance (GSD) de 3,75 cm/ pixel, restituindo batimetrias com profundidades até 0,9 m, recobrindo todo o gap entre os dados de LiDAR e ecobatímetro nas regiões mais rasas que isso. Regiões mais profundas apresentaram, em média, 40% do gap recoberto. Testes de hipótese e teste de precisão do PEC mostraram que os Pontos de Verificação (PV) submersos apresentam maiores magnitudes de discrepância altimétrica do que os PV da porção seca, enquanto, planimetricamente, as discrepâncias apresentam comportamentos semelhantes. Coeficientes de correlação de Pearson e Spearman, validados por reamostragem Bootstrap com n = 1000, indicaram alta correlação entre as discrepâncias altimétricas da porção submersa do MDT fotogramétrico e a profundidade do corpo hídrico, sugerindo controle das discrepâncias por parte da refração da luz, descrita pela Lei de Snell. Encontramos que o uso da técnica como subsídio à integração topobatimétrica de reservatórios se mostra adequada, porém há de se considerar que a parte fotogramétrica do MDTB tenderá a ser mais rasa que a realidade.Universidade Federal do Rio de JaneiroAgência Reguladora de Águas, Energia e Saneamento do Distrito Federal (ADASA) pela bolsa de pesquisa necessária para a viabilização do projeto, referente ao convênio ADASA – Universidade de Brasília de número 01/2017, processo 197.001.077/2016Fleury, Fábio Barros CuradoRoig, Henrique LlacerMarotta, Giuliano Sant'AnnaCiccerelli, Rejane EnnesIanniruberto, Marco2021-11-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3971610.11137/1982-3908_2021_44_39716Anuário do Instituto de Geociências; Vol 44 (2021)Anuário do Instituto de Geociências; Vol 44 (2021)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJporhttps://revistas.ufrj.br/index.php/aigeo/article/view/39716/pdf/*ref*/Bailily J.S., Le Coarer, Y., Languille, P., Stigermark, C.J. & Allouis, T. 2010, ‘Geostatistical estimations of bathymetric LiDAR errors on rivers’, Earth Surface Processes and Landforms, vol. 35, pp. 1199–210. https://doi.org/10.1002/esp.1991 Carvalho, J.A.B. & Silva, D.C. 2018, ‘Métodos para avaliação da acurácia posicional altimétrica no Brasil’, Revista Brasileira de Cartografia, vol. 70, no 2, pp. 725-44. https://doi.org/10.14393/rbcv70n2-45404 Danielson, J.J., Poppenga, S.K., Brock, J.C., Evans, G.A., Tyler, D.J., Gesch, D.B., Thatcher, C.A. & Barras, J.A. 2016, ‘Topobathymetric Elevation Model Development using a New Methodology: Coastal National Elevation Database’, Journal of Coastal Research, Special Issue, no. 76, pp. 75–89. https://doi.org/10.2112/SI76-008 Dietrich, J.T. 2017, ‘Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry’, Earth Surface Processes and Landforms, vol. 42, pp. 355–64. https://doi.org/10.1002/esp.4060 Erena, M., Atenza, F.J., García-Galiano, S., Dominguez, J.A. & Bernabé, J.M. 2019, ‘Use of Drones for the Topo-Bathymetric Monitoring of the Reservoirs of the Segura River Basin’, Water, vol. 11, no. 445. https://doi.org/10.3390/w11030445 Hogrefe, K.R., Wright, D.J., & Hochberg, E.J. 2008, ‘Derivation and integration of shallow-water bathymetry: Implications for coastal terrain modeling and subsequent analyses’, Marine Geodesy, vol. 31, pp. 299–17. https://doi.org/10.1080/01490410802466710 Javernick, L., Brasington, J. & Caruso, B. 2014, ‘Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry’, Geomorphology vol. 213, pp. 166–82. https://doi.org/10.1016/j.geomorph.2014.01.006 Lane, S.N., Widdison, P.E., Thomas, R.E., Ashworth P.J., Best, J.L., Lunt, I.A., Smith, G.H. & Simpson, C.J. 2010, ‘Quantification of braided river channel change using archival digital image analysis’, Earth Surface Processes and Landforms, vol. 35, pp. 971–85. https://doi.org/10.1002/esp.2015 Li, J. & Heap, D. 2014, ‘Spatial interpolation methods applied in the environmental sciences: A review’, Environmental Modelling & Software, vol. 53, pp. 173-89. https://doi.org/10.1016/j.envsoft.2013.12.008 Marotta, G.S., Cicerelli R.E., Ferreira, A.M.R., Roig, H.L. & Abreu, M.A. 2015, ‘Avaliação posicional de Modelo Digital de Superfície derivado de câmara de pequeno formato’, Revista Brasileira de Cartografia, vol. 67, pp. 1467-77. Murase, T., Tanaka, M., Tani, T., Miyashita, Y., Ohkawa, N., Ishiguro, S., Suzuki, Y., Kayanne, H. & Yamano, H. 2008, ‘A photogrammetric correction procedure for light refraction effects at a two-medium boundary’, Photogrammetric Engineering & Remote Sensing, vol. 74, pp. 1129–36. https://doi.org/10.14358/PERS.74.9.1129 National Oceanic and Atmospheric Administration 2007, Topographic and Bathymetric Data Considerations: Datums, Datum Conversion Techniques, and Data Integration, https://coast.noaa.gov/data/digitalcoast/pdf/topo-bathy-data-considerations.pdf. Santos, A.P., Rodrigues, D.D., Santos, N.T. & Junior, J.G. 2016, ‘Avaliação da acurácia posicional em dados espaciais utilizando técnicas de estatística espacial: proposta de método e exemplo utilizando a norma brasileira’, Boletim de Ciências Geodésicas, vol. 22, no. 4. https://revistas.ufpr.br/bcg/article/view/49633 Skarlatos, D. & Agrafiotis, P. 2018, ‘A Novel Iterative Water Refraction Correction Algorithm for Use in Structure from Motion Photogrammetric Pipeline’, Journal of Marine Science and Engineering, vol. 6, no. 3, p. 77. https://doi.org/10.3390/jmse6030077 Tewinkel G. C. 1963. ‘Water depths from aerial photographs’. Photogrammetric Engineering, vol. 29, no. 6, pp. 1037–42. Tonina, D., McKean, J., Benjakar, R.M., Wright, C.W., Goode, J.R., Chen, Q., Reeder, W.J., Carmichael, R.A. & Edmondson, M.R. 2018, ‘Mapping river bathymetries: Evaluating topobathymetric LiDAR survey: River bathymetry revealed’, Earth Surface Processes and Landforms, vol. 44, pp. 507–20. https://doi.org/10.1002/esp.4513 Tonina, D., McKean, J.A., Benjankar, R.M., Yager, E., Carmichael, R.A., Chen, Q. & Edmondson, M.R. 2020, ‘Evaluating the performance of topobathymetric LiDAR to support multi-dimensional flow modelling in a gravel-bed mountain stream’ Earth Surface Processes and Landforms, vol. 45, no. 12, pp. 2850-68. https://doi.org/10.1002/esp.4934 Trauth, M.H., Gebbers, R., Marwan, N. & Sillmann, E. 2007, MATLAB recipes for earth sciences, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-12762-5 Woodget, A.S., Carbonneau, P.E., Visser, F. & Maddock, I.P. 2015, ‘Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry’, Earth Surface Processes and Landforms, vol. 40, pp. 47–64. https://doi.org/10.1002/esp.3613. Westaway, R.M., Lane, S.N. & Hicks, D.M. 2000, ‘The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers’, Earth Surface Processes and Landforms, vol. 25, pp. 209–26. https://doi.org/10.1002/(SICI)1096-9837(200002)25:2<209::AID-ESP84>3.0.CO,2-Z.Copyright (c) 2021 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-11-03T14:31:38Zoai:www.revistas.ufrj.br:article/39716Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-11-03T14:31:38Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
title Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
spellingShingle Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
Fleury, Fábio Barros Curado
Fotogrametria; Topobatimetria; Batimetria Ótica
title_short Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
title_full Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
title_fullStr Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
title_full_unstemmed Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
title_sort Aerofotogrametria Digital como Ferramenta Integrativa para Geração de Modelos Digitais Topobatimétricos de Reservatórios D’água
author Fleury, Fábio Barros Curado
author_facet Fleury, Fábio Barros Curado
Roig, Henrique Llacer
Marotta, Giuliano Sant'Anna
Ciccerelli, Rejane Ennes
Ianniruberto, Marco
author_role author
author2 Roig, Henrique Llacer
Marotta, Giuliano Sant'Anna
Ciccerelli, Rejane Ennes
Ianniruberto, Marco
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Agência Reguladora de Águas, Energia e Saneamento do Distrito Federal (ADASA) pela bolsa de pesquisa necessária para a viabilização do projeto, referente ao convênio ADASA – Universidade de Brasília de número 01/2017, processo 197.001.077/2016
dc.contributor.author.fl_str_mv Fleury, Fábio Barros Curado
Roig, Henrique Llacer
Marotta, Giuliano Sant'Anna
Ciccerelli, Rejane Ennes
Ianniruberto, Marco
dc.subject.por.fl_str_mv Fotogrametria; Topobatimetria; Batimetria Ótica
topic Fotogrametria; Topobatimetria; Batimetria Ótica
description Modelos Digitais Topobatimétricos (MDTB) de alta resolução espacial e posicional são dados preciosos à gestão de reservatórios d’água. Para geração dessas superfícies digitais, geralmente são integrados dados derivados de LiDAR aerotransportado e ecobatímetros. A superfície digital resultante dessa interpolação apresenta tipicamente uma região de ausência (gap) de informações entre as nuvens de dados dos dois sensores em áreas submersas rasas, em função de limitações de cada um dos métodos. Esse vazio é geralmente resolvido por interpolação, se tornando uma área de valores batimétricos de precisão planialtimétrica duvidosa. Assim, o trabalho avalia o uso de fotogrametria digital com ARP (Aeronave Remotamente Pilotada) para aquisição de dados batimétricos de margens rasas de reservatórios e investiga a possibilidade de utilização da ferramenta para complementar o gap de dados do MDTB convencional. Para isso, foi avaliada a qualidade posicional da porção batimétrica do  Modelo Digital de Terreno (MDT) fotogramétrico comparativamente à dados de receptor GNSS. O MDT fotogramétrico apresentou Ground Sampling Distance (GSD) de 3,75 cm/ pixel, restituindo batimetrias com profundidades até 0,9 m, recobrindo todo o gap entre os dados de LiDAR e ecobatímetro nas regiões mais rasas que isso. Regiões mais profundas apresentaram, em média, 40% do gap recoberto. Testes de hipótese e teste de precisão do PEC mostraram que os Pontos de Verificação (PV) submersos apresentam maiores magnitudes de discrepância altimétrica do que os PV da porção seca, enquanto, planimetricamente, as discrepâncias apresentam comportamentos semelhantes. Coeficientes de correlação de Pearson e Spearman, validados por reamostragem Bootstrap com n = 1000, indicaram alta correlação entre as discrepâncias altimétricas da porção submersa do MDT fotogramétrico e a profundidade do corpo hídrico, sugerindo controle das discrepâncias por parte da refração da luz, descrita pela Lei de Snell. Encontramos que o uso da técnica como subsídio à integração topobatimétrica de reservatórios se mostra adequada, porém há de se considerar que a parte fotogramétrica do MDTB tenderá a ser mais rasa que a realidade.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-03
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/39716
10.11137/1982-3908_2021_44_39716
url https://revistas.ufrj.br/index.php/aigeo/article/view/39716
identifier_str_mv 10.11137/1982-3908_2021_44_39716
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/39716/pdf
/*ref*/Bailily J.S., Le Coarer, Y., Languille, P., Stigermark, C.J. & Allouis, T. 2010, ‘Geostatistical estimations of bathymetric LiDAR errors on rivers’, Earth Surface Processes and Landforms, vol. 35, pp. 1199–210. https://doi.org/10.1002/esp.1991 Carvalho, J.A.B. & Silva, D.C. 2018, ‘Métodos para avaliação da acurácia posicional altimétrica no Brasil’, Revista Brasileira de Cartografia, vol. 70, no 2, pp. 725-44. https://doi.org/10.14393/rbcv70n2-45404 Danielson, J.J., Poppenga, S.K., Brock, J.C., Evans, G.A., Tyler, D.J., Gesch, D.B., Thatcher, C.A. & Barras, J.A. 2016, ‘Topobathymetric Elevation Model Development using a New Methodology: Coastal National Elevation Database’, Journal of Coastal Research, Special Issue, no. 76, pp. 75–89. https://doi.org/10.2112/SI76-008 Dietrich, J.T. 2017, ‘Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry’, Earth Surface Processes and Landforms, vol. 42, pp. 355–64. https://doi.org/10.1002/esp.4060 Erena, M., Atenza, F.J., García-Galiano, S., Dominguez, J.A. & Bernabé, J.M. 2019, ‘Use of Drones for the Topo-Bathymetric Monitoring of the Reservoirs of the Segura River Basin’, Water, vol. 11, no. 445. https://doi.org/10.3390/w11030445 Hogrefe, K.R., Wright, D.J., & Hochberg, E.J. 2008, ‘Derivation and integration of shallow-water bathymetry: Implications for coastal terrain modeling and subsequent analyses’, Marine Geodesy, vol. 31, pp. 299–17. https://doi.org/10.1080/01490410802466710 Javernick, L., Brasington, J. & Caruso, B. 2014, ‘Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry’, Geomorphology vol. 213, pp. 166–82. https://doi.org/10.1016/j.geomorph.2014.01.006 Lane, S.N., Widdison, P.E., Thomas, R.E., Ashworth P.J., Best, J.L., Lunt, I.A., Smith, G.H. & Simpson, C.J. 2010, ‘Quantification of braided river channel change using archival digital image analysis’, Earth Surface Processes and Landforms, vol. 35, pp. 971–85. https://doi.org/10.1002/esp.2015 Li, J. & Heap, D. 2014, ‘Spatial interpolation methods applied in the environmental sciences: A review’, Environmental Modelling & Software, vol. 53, pp. 173-89. https://doi.org/10.1016/j.envsoft.2013.12.008 Marotta, G.S., Cicerelli R.E., Ferreira, A.M.R., Roig, H.L. & Abreu, M.A. 2015, ‘Avaliação posicional de Modelo Digital de Superfície derivado de câmara de pequeno formato’, Revista Brasileira de Cartografia, vol. 67, pp. 1467-77. Murase, T., Tanaka, M., Tani, T., Miyashita, Y., Ohkawa, N., Ishiguro, S., Suzuki, Y., Kayanne, H. & Yamano, H. 2008, ‘A photogrammetric correction procedure for light refraction effects at a two-medium boundary’, Photogrammetric Engineering & Remote Sensing, vol. 74, pp. 1129–36. https://doi.org/10.14358/PERS.74.9.1129 National Oceanic and Atmospheric Administration 2007, Topographic and Bathymetric Data Considerations: Datums, Datum Conversion Techniques, and Data Integration, https://coast.noaa.gov/data/digitalcoast/pdf/topo-bathy-data-considerations.pdf. Santos, A.P., Rodrigues, D.D., Santos, N.T. & Junior, J.G. 2016, ‘Avaliação da acurácia posicional em dados espaciais utilizando técnicas de estatística espacial: proposta de método e exemplo utilizando a norma brasileira’, Boletim de Ciências Geodésicas, vol. 22, no. 4. https://revistas.ufpr.br/bcg/article/view/49633 Skarlatos, D. & Agrafiotis, P. 2018, ‘A Novel Iterative Water Refraction Correction Algorithm for Use in Structure from Motion Photogrammetric Pipeline’, Journal of Marine Science and Engineering, vol. 6, no. 3, p. 77. https://doi.org/10.3390/jmse6030077 Tewinkel G. C. 1963. ‘Water depths from aerial photographs’. Photogrammetric Engineering, vol. 29, no. 6, pp. 1037–42. Tonina, D., McKean, J., Benjakar, R.M., Wright, C.W., Goode, J.R., Chen, Q., Reeder, W.J., Carmichael, R.A. & Edmondson, M.R. 2018, ‘Mapping river bathymetries: Evaluating topobathymetric LiDAR survey: River bathymetry revealed’, Earth Surface Processes and Landforms, vol. 44, pp. 507–20. https://doi.org/10.1002/esp.4513 Tonina, D., McKean, J.A., Benjankar, R.M., Yager, E., Carmichael, R.A., Chen, Q. & Edmondson, M.R. 2020, ‘Evaluating the performance of topobathymetric LiDAR to support multi-dimensional flow modelling in a gravel-bed mountain stream’ Earth Surface Processes and Landforms, vol. 45, no. 12, pp. 2850-68. https://doi.org/10.1002/esp.4934 Trauth, M.H., Gebbers, R., Marwan, N. & Sillmann, E. 2007, MATLAB recipes for earth sciences, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-12762-5 Woodget, A.S., Carbonneau, P.E., Visser, F. & Maddock, I.P. 2015, ‘Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry’, Earth Surface Processes and Landforms, vol. 40, pp. 47–64. https://doi.org/10.1002/esp.3613. Westaway, R.M., Lane, S.N. & Hicks, D.M. 2000, ‘The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers’, Earth Surface Processes and Landforms, vol. 25, pp. 209–26. https://doi.org/10.1002/(SICI)1096-9837(200002)25:2<209::AID-ESP84>3.0.CO,2-Z.
dc.rights.driver.fl_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 44 (2021)
Anuário do Instituto de Geociências; Vol 44 (2021)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053541844516864