Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest

Detalhes bibliográficos
Autor(a) principal: Kiyohara, Bárbara Hass
Data de Publicação: 2023
Outros Autores: Sano, Edson Eyji
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/71235
Resumo: This study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest.
id UFSM-6_a2d511635add02ed2795f0c0573bf738
oai_identifier_str oai:ojs.pkp.sfu.ca:article/71235
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforestAvaliação de dados polarimétricos e de atributos de textura em imagens SAR para discriminar a floresta secundária em uma área de domínio de floresta amazônicaAmazonSecondary vegetationRemote sensingAmazôniaVegetação secundáriaSensoriamento remotoThis study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest.O objetivo do presente estudo foi avaliar a capacidade de atributos polarimétricos e de retroespalhamento do Sentinel-1 em relação às feições de textura e de retroespalhamento do COSMO-SkyMed (CSM), em discriminar diferentes estágios de floresta secundária em uma área de domínio de Floresta Amazônica, no estado do Mato Grosso. Neste estudo, utilizou-se uma imagem de Radar de Abertura Sintética (SAR) do Sentinel-1 nas polarizações VV e VH e uma imagem SAR do CSM na polarização HH, ambas no formato Single Look Complex. Na imagem Sentinel-1 foi gerada a matriz de covariância e aplicado o teorema de decomposição de alvos H-Alpha, para obtenção dos atributos Entropia e Ângulo alfa. Na imagem CSM, foram obtidos os atributos de textura a partir da matriz de co-ocorrência de níveis de cinza (GLCM): dissimilaridade, contraste, homogeneidade e segundo momento. Para a classificação, foi utilizado o algoritmo Máquina de Vetores de Suporte (SVM). A classificação derivada dos atributos polarimétricos do Sentinel-1, com índice Kappa de 0,70 e exatidão global de 79,58%, apresentou desempenho superior àquela derivada do CSM, com índice Kappa de 0,56 e exatidão global de 63,67%. Entretanto, tanto os atributos derivados do Sentinel-1 como do CSM não apresentaram resultados satisfatórios para discriminar os diferentes estágios de floresta secundária.Universidade Federal de Santa Maria2023-06-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/7123510.5902/1980509871235Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e71235Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e712351980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaflorestal/article/view/71235/61102Copyright (c) 2023 Ciência Florestalhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessKiyohara, Bárbara HassSano, Edson Eyji2023-06-29T01:54:42Zoai:ojs.pkp.sfu.ca:article/71235Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2023-06-29T01:54:42Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
Avaliação de dados polarimétricos e de atributos de textura em imagens SAR para discriminar a floresta secundária em uma área de domínio de floresta amazônica
title Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
spellingShingle Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
Kiyohara, Bárbara Hass
Amazon
Secondary vegetation
Remote sensing
Amazônia
Vegetação secundária
Sensoriamento remoto
title_short Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
title_full Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
title_fullStr Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
title_full_unstemmed Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
title_sort Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
author Kiyohara, Bárbara Hass
author_facet Kiyohara, Bárbara Hass
Sano, Edson Eyji
author_role author
author2 Sano, Edson Eyji
author2_role author
dc.contributor.author.fl_str_mv Kiyohara, Bárbara Hass
Sano, Edson Eyji
dc.subject.por.fl_str_mv Amazon
Secondary vegetation
Remote sensing
Amazônia
Vegetação secundária
Sensoriamento remoto
topic Amazon
Secondary vegetation
Remote sensing
Amazônia
Vegetação secundária
Sensoriamento remoto
description This study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/71235
10.5902/1980509871235
url https://periodicos.ufsm.br/cienciaflorestal/article/view/71235
identifier_str_mv 10.5902/1980509871235
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/71235/61102
dc.rights.driver.fl_str_mv Copyright (c) 2023 Ciência Florestal
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Ciência Florestal
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e71235
Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e71235
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944124330147840