Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência Florestal (Online) |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/71235 |
Resumo: | This study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest. |
id |
UFSM-6_a2d511635add02ed2795f0c0573bf738 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/71235 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
repository_id_str |
|
spelling |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforestAvaliação de dados polarimétricos e de atributos de textura em imagens SAR para discriminar a floresta secundária em uma área de domínio de floresta amazônicaAmazonSecondary vegetationRemote sensingAmazôniaVegetação secundáriaSensoriamento remotoThis study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest.O objetivo do presente estudo foi avaliar a capacidade de atributos polarimétricos e de retroespalhamento do Sentinel-1 em relação às feições de textura e de retroespalhamento do COSMO-SkyMed (CSM), em discriminar diferentes estágios de floresta secundária em uma área de domínio de Floresta Amazônica, no estado do Mato Grosso. Neste estudo, utilizou-se uma imagem de Radar de Abertura Sintética (SAR) do Sentinel-1 nas polarizações VV e VH e uma imagem SAR do CSM na polarização HH, ambas no formato Single Look Complex. Na imagem Sentinel-1 foi gerada a matriz de covariância e aplicado o teorema de decomposição de alvos H-Alpha, para obtenção dos atributos Entropia e Ângulo alfa. Na imagem CSM, foram obtidos os atributos de textura a partir da matriz de co-ocorrência de níveis de cinza (GLCM): dissimilaridade, contraste, homogeneidade e segundo momento. Para a classificação, foi utilizado o algoritmo Máquina de Vetores de Suporte (SVM). A classificação derivada dos atributos polarimétricos do Sentinel-1, com índice Kappa de 0,70 e exatidão global de 79,58%, apresentou desempenho superior àquela derivada do CSM, com índice Kappa de 0,56 e exatidão global de 63,67%. Entretanto, tanto os atributos derivados do Sentinel-1 como do CSM não apresentaram resultados satisfatórios para discriminar os diferentes estágios de floresta secundária.Universidade Federal de Santa Maria2023-06-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/7123510.5902/1980509871235Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e71235Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e712351980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaflorestal/article/view/71235/61102Copyright (c) 2023 Ciência Florestalhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessKiyohara, Bárbara HassSano, Edson Eyji2023-06-29T01:54:42Zoai:ojs.pkp.sfu.ca:article/71235Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2023-06-29T01:54:42Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest Avaliação de dados polarimétricos e de atributos de textura em imagens SAR para discriminar a floresta secundária em uma área de domínio de floresta amazônica |
title |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest |
spellingShingle |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest Kiyohara, Bárbara Hass Amazon Secondary vegetation Remote sensing Amazônia Vegetação secundária Sensoriamento remoto |
title_short |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest |
title_full |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest |
title_fullStr |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest |
title_full_unstemmed |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest |
title_sort |
Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest |
author |
Kiyohara, Bárbara Hass |
author_facet |
Kiyohara, Bárbara Hass Sano, Edson Eyji |
author_role |
author |
author2 |
Sano, Edson Eyji |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kiyohara, Bárbara Hass Sano, Edson Eyji |
dc.subject.por.fl_str_mv |
Amazon Secondary vegetation Remote sensing Amazônia Vegetação secundária Sensoriamento remoto |
topic |
Amazon Secondary vegetation Remote sensing Amazônia Vegetação secundária Sensoriamento remoto |
description |
This study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/71235 10.5902/1980509871235 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/71235 |
identifier_str_mv |
10.5902/1980509871235 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/71235/61102 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Ciência Florestal http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Ciência Florestal http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e71235 Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e71235 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1799944124330147840 |