Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo

Detalhes bibliográficos
Autor(a) principal: Tyska, Denize
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000v2f4
Texto Completo: http://repositorio.ufsm.br/handle/1/23198
Resumo: Cereal grain quality can be altered by the presence of fungi, which may produce mycotoxins that have the potential to cause harm to human and animal health. It is thus essential to monitor the levels of such substances in products intended for consumption. Despite being efficient, current analytical methodologies are time consuming and require the use of varied reagents and instruments, so the Industry demands the development of fast and reliable methods to expedite decision making. In this setting, the present work employs near infrared reflectance spectroscopy (NIRS) in association with chemometric methods for quantification and classification to build multivariate models for predicting mycotoxins. Four studies were performed in the following matrices: corn; corn distiller’s dried grains with solubles (DDGS); and wheat flour. The analyzed mycotoxins were aflatoxin B1 (AFB1), fumonisin B1 (FB1) + fumonisin B2 (FB2) (total fumonisins, FBs), deoxynivalenol (DON) and zearalenone (ZEA). Spectral data were processed through partial least squares and the number of principal components of the models was determined by cross-validation. Liquid chromatography coupled to tandem mass spectrometry was used as the reference methodology. The first study developed prediction curves for FBs and ZEA in corn. Correlation coefficient (R), determination coefficient and residual prediction deviation (RPD) for FBs and ZEA were, respectively: 0.809 and 0.991; 0.899 and 0.984; and 3.33 and 2.71. The second study assessed mycotoxicological prevalence and chemical composition (water activity, crude protein, ether extract, starch and apparent metabolisable energy in poultry) in 8,854 spectra of corn originating from Argentina, Bolivia, Brazil (stratified per regions), Colombia and Peru in 2020. FBs showed the greatest prevalence in South American as well as in Brazilian samples: 91.6% and 92.6%, respectively. Crude protein ranged from 6.7% in Colombia to 8.4% in Bolivia in relation to the mean (7.4%). The chemical composition of the samples from the Southeast region of Brazil presented the largest positive variability in relation to the means. The third study was conducted in DDGS and elaborated prediction curves for FB1 and FB2. One hundred ninety samples were used to build the models, being 132 for calibration and 58 for external validation. The results of R and RPD for FB1 and FB2 were, respectively: 0.90 and 0.88; and 2.16 and 2.06. The fourth study evaluated DONcontaminated wheat flour samples using partial least-squares discriminant analysis (PLS-DA) and principal components-linear discriminant analysis (PC-LDA). The samples were classified according to the maximum tolerated limit (MTL) for DON in Brazil, 750 μg.kg-¹, and two groups were established for the calibration set: category A (≤ 450 μg kg-¹), non-contaminated or below the MTL; and category B (> 450 μg kg-¹), contaminated or above the MTL. Validation samples analyzed via PLS-DA showed correct classification rates between 85 and 87.5%; for PC-LDA, the hit rate was over 85%. Both methods presented a 10-15% error. The results achieved through these studies evidence the potential of the alternative technology NIRS to be used in the Industry, providing agility to the analytical process of the ingredients. Therefore, decisions can be made assertively and thus ensure food quality and safety.
id UFSM_c9c2e04a5de453c5fb1c903f93ac9092
oai_identifier_str oai:repositorio.ufsm.br:1/23198
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximoPrediction of mycotoxins in cereals and by-products via near infrared reflectance spectroscopyMicotoxinasEspectroscopia de reflectância no infravermelho próximoQuimiometriaMínimos quadrados parciaisMétodos classificatóriosMycotoxinsNear Infrared reflectance spectroscopyChemometricsPartial least squaresClassification methodsCNPQ::CIENCIAS AGRARIAS::MEDICINA VETERINARIACereal grain quality can be altered by the presence of fungi, which may produce mycotoxins that have the potential to cause harm to human and animal health. It is thus essential to monitor the levels of such substances in products intended for consumption. Despite being efficient, current analytical methodologies are time consuming and require the use of varied reagents and instruments, so the Industry demands the development of fast and reliable methods to expedite decision making. In this setting, the present work employs near infrared reflectance spectroscopy (NIRS) in association with chemometric methods for quantification and classification to build multivariate models for predicting mycotoxins. Four studies were performed in the following matrices: corn; corn distiller’s dried grains with solubles (DDGS); and wheat flour. The analyzed mycotoxins were aflatoxin B1 (AFB1), fumonisin B1 (FB1) + fumonisin B2 (FB2) (total fumonisins, FBs), deoxynivalenol (DON) and zearalenone (ZEA). Spectral data were processed through partial least squares and the number of principal components of the models was determined by cross-validation. Liquid chromatography coupled to tandem mass spectrometry was used as the reference methodology. The first study developed prediction curves for FBs and ZEA in corn. Correlation coefficient (R), determination coefficient and residual prediction deviation (RPD) for FBs and ZEA were, respectively: 0.809 and 0.991; 0.899 and 0.984; and 3.33 and 2.71. The second study assessed mycotoxicological prevalence and chemical composition (water activity, crude protein, ether extract, starch and apparent metabolisable energy in poultry) in 8,854 spectra of corn originating from Argentina, Bolivia, Brazil (stratified per regions), Colombia and Peru in 2020. FBs showed the greatest prevalence in South American as well as in Brazilian samples: 91.6% and 92.6%, respectively. Crude protein ranged from 6.7% in Colombia to 8.4% in Bolivia in relation to the mean (7.4%). The chemical composition of the samples from the Southeast region of Brazil presented the largest positive variability in relation to the means. The third study was conducted in DDGS and elaborated prediction curves for FB1 and FB2. One hundred ninety samples were used to build the models, being 132 for calibration and 58 for external validation. The results of R and RPD for FB1 and FB2 were, respectively: 0.90 and 0.88; and 2.16 and 2.06. The fourth study evaluated DONcontaminated wheat flour samples using partial least-squares discriminant analysis (PLS-DA) and principal components-linear discriminant analysis (PC-LDA). The samples were classified according to the maximum tolerated limit (MTL) for DON in Brazil, 750 μg.kg-¹, and two groups were established for the calibration set: category A (≤ 450 μg kg-¹), non-contaminated or below the MTL; and category B (> 450 μg kg-¹), contaminated or above the MTL. Validation samples analyzed via PLS-DA showed correct classification rates between 85 and 87.5%; for PC-LDA, the hit rate was over 85%. Both methods presented a 10-15% error. The results achieved through these studies evidence the potential of the alternative technology NIRS to be used in the Industry, providing agility to the analytical process of the ingredients. Therefore, decisions can be made assertively and thus ensure food quality and safety.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA qualidade do grão de cereal pode ser alterada pela presença de fungos, os quais podem produzir micotoxinas com potencial de causar danos à saúde humana e animal. Portanto, faz-se necessário monitorar os níveis dessas substâncias em produtos destinados ao consumo. Apesar de eficientes, as metodologias analíticas atualmente utilizadas são morosas e requerem o uso de diversos reagentes e instrumentos, sendo o desenvolvimento de métodos rápidos e confiáveis uma demanda da Indústria para agilizar a tomada de decisão. Nesse contexto, o presente trabalho emprega a espectroscopia de refletância no infravermelho próximo (NIRS) associada a métodos quimiométricos para quantificação e classificação na construção de modelos multivariados para a predição de micotoxinas. Quatro estudos foram desenvolvidos nas seguintes matrizes: milho; resíduo seco de destilaria com solúveis (DDGS) de milho; e farinha de trigo. As micotoxinas analisadas foram: aflatoxina B1 (AFB1), fumonisina B1 (FB1) + fumonisina B2 (FB2) (fumonisinas totais, FBs), deoxinivalenol (DON) e zearalenona (ZEA). Os dados espectrais foram processados pelo método de mínimos quadrados parciais e o número de componentes principais dos modelos foi determinado por validação cruzada. A cromatografia líquida acoplada à espectrometria de massas em tandem foi usada como metodologia de referência. O primeiro estudo desenvolveu curvas de predição para FBs e ZEA em milho. O coeficiente de correlação (R), o coeficiente de determinação e a relação de desempenho do desvio (RPD) para FBs e ZEA foram, respectivamente: 0,809 e 0,991; 0,899 e 0,984; e 3,33 e 2,71. O segundo estudo analisou a prevalência micotoxicológica e a composição nutricional (atividade de água, proteína bruta, extrato etéreo, amido e energia metabolizável aparente para aves) em 8.854 espectros de milho proveniente da Argentina, Bolívia, Brasil (estratificado por região), Colômbia e Peru em 2020. As FBs apresentaram a maior prevalência nas amostras latino-americanas assim como nas brasileiras: 91,6% e 92,6%, respectivamente. A proteína bruta variou de 6,7% na Colômbia a 8,4% na Bolívia em relação à média (7,4%). A composição química das amostras originárias da região Sudeste do Brasil mostrou a maior variabilidade positiva em relação às médias. O terceiro estudo foi realizado em DDGS e elaborou curvas de predição para FB1 e FB2. Os modelos foram construídos a partir de 190 amostras, sendo 132 para calibração e 58 para validação externa. Os resultados de R e RPD para FB1 e FB2 foram, respectivamente: 0,90 e 0,88; e 2,16 e 2,06. O quarto estudo avaliou amostras de farinha de trigo contaminadas com DON utilizando os métodos de análise discriminante por mínimos quadrados parciais (PLS-DA) e análise discriminante linear de componentes principais (PC-LDA). A classificação das amostras baseou-se no limite máximo tolerado (LMT) para DON no Brasil, 750 μg kg-¹, sendo dois grupos estabelecidos para o conjunto de calibração: categoria A (≤ 450 μg kg-¹), não contaminado ou inferior ao LMT; e categoria B (> 450 μg kg-¹), contaminado ou acima do LMT. As amostras de validação analisadas por PLS-DA apresentaram taxas de classificação correta entre 85 e 87,5%; para PC-LDA, a taxa de acerto foi superior a 85%. Nos dois casos, o erro foi de 10 a 15%. Os resultados obtidos através desses estudos indicam o potencial da tecnologia alternativa NIRS para uso na Indústria, conferindo agilidade ao processo analítico dos ingredientes. Dessa forma, as decisões podem ser tomadas de forma assertiva e assim assegurar a qualidade e a segurança alimentar.Universidade Federal de Santa MariaBrasilMedicina VeterináriaUFSMPrograma de Pós-Graduação em Medicina VeterináriaCentro de Ciências RuraisMallmann, Carlos Augustohttp://lattes.cnpq.br/5193771213666058Vogel, Fernanda Silveira Flôreshttp://lattes.cnpq.br/9676833435314493Almeida, Carlos Alberto Araujo deNascimento, Paulo Cícero doKrabbe, Everton LuisSá, Luciano MoraesTyska, Denize2021-12-09T11:13:44Z2021-12-09T11:13:44Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23198ark:/26339/001300000v2f4porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-10T06:04:16Zoai:repositorio.ufsm.br:1/23198Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-10T06:04:16Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
Prediction of mycotoxins in cereals and by-products via near infrared reflectance spectroscopy
title Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
spellingShingle Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
Tyska, Denize
Micotoxinas
Espectroscopia de reflectância no infravermelho próximo
Quimiometria
Mínimos quadrados parciais
Métodos classificatórios
Mycotoxins
Near Infrared reflectance spectroscopy
Chemometrics
Partial least squares
Classification methods
CNPQ::CIENCIAS AGRARIAS::MEDICINA VETERINARIA
title_short Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
title_full Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
title_fullStr Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
title_full_unstemmed Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
title_sort Predição de micotoxinas em cereais e subprodutos via espectroscopia de reflectância no infravermelho próximo
author Tyska, Denize
author_facet Tyska, Denize
author_role author
dc.contributor.none.fl_str_mv Mallmann, Carlos Augusto
http://lattes.cnpq.br/5193771213666058
Vogel, Fernanda Silveira Flôres
http://lattes.cnpq.br/9676833435314493
Almeida, Carlos Alberto Araujo de
Nascimento, Paulo Cícero do
Krabbe, Everton Luis
Sá, Luciano Moraes
dc.contributor.author.fl_str_mv Tyska, Denize
dc.subject.por.fl_str_mv Micotoxinas
Espectroscopia de reflectância no infravermelho próximo
Quimiometria
Mínimos quadrados parciais
Métodos classificatórios
Mycotoxins
Near Infrared reflectance spectroscopy
Chemometrics
Partial least squares
Classification methods
CNPQ::CIENCIAS AGRARIAS::MEDICINA VETERINARIA
topic Micotoxinas
Espectroscopia de reflectância no infravermelho próximo
Quimiometria
Mínimos quadrados parciais
Métodos classificatórios
Mycotoxins
Near Infrared reflectance spectroscopy
Chemometrics
Partial least squares
Classification methods
CNPQ::CIENCIAS AGRARIAS::MEDICINA VETERINARIA
description Cereal grain quality can be altered by the presence of fungi, which may produce mycotoxins that have the potential to cause harm to human and animal health. It is thus essential to monitor the levels of such substances in products intended for consumption. Despite being efficient, current analytical methodologies are time consuming and require the use of varied reagents and instruments, so the Industry demands the development of fast and reliable methods to expedite decision making. In this setting, the present work employs near infrared reflectance spectroscopy (NIRS) in association with chemometric methods for quantification and classification to build multivariate models for predicting mycotoxins. Four studies were performed in the following matrices: corn; corn distiller’s dried grains with solubles (DDGS); and wheat flour. The analyzed mycotoxins were aflatoxin B1 (AFB1), fumonisin B1 (FB1) + fumonisin B2 (FB2) (total fumonisins, FBs), deoxynivalenol (DON) and zearalenone (ZEA). Spectral data were processed through partial least squares and the number of principal components of the models was determined by cross-validation. Liquid chromatography coupled to tandem mass spectrometry was used as the reference methodology. The first study developed prediction curves for FBs and ZEA in corn. Correlation coefficient (R), determination coefficient and residual prediction deviation (RPD) for FBs and ZEA were, respectively: 0.809 and 0.991; 0.899 and 0.984; and 3.33 and 2.71. The second study assessed mycotoxicological prevalence and chemical composition (water activity, crude protein, ether extract, starch and apparent metabolisable energy in poultry) in 8,854 spectra of corn originating from Argentina, Bolivia, Brazil (stratified per regions), Colombia and Peru in 2020. FBs showed the greatest prevalence in South American as well as in Brazilian samples: 91.6% and 92.6%, respectively. Crude protein ranged from 6.7% in Colombia to 8.4% in Bolivia in relation to the mean (7.4%). The chemical composition of the samples from the Southeast region of Brazil presented the largest positive variability in relation to the means. The third study was conducted in DDGS and elaborated prediction curves for FB1 and FB2. One hundred ninety samples were used to build the models, being 132 for calibration and 58 for external validation. The results of R and RPD for FB1 and FB2 were, respectively: 0.90 and 0.88; and 2.16 and 2.06. The fourth study evaluated DONcontaminated wheat flour samples using partial least-squares discriminant analysis (PLS-DA) and principal components-linear discriminant analysis (PC-LDA). The samples were classified according to the maximum tolerated limit (MTL) for DON in Brazil, 750 μg.kg-¹, and two groups were established for the calibration set: category A (≤ 450 μg kg-¹), non-contaminated or below the MTL; and category B (> 450 μg kg-¹), contaminated or above the MTL. Validation samples analyzed via PLS-DA showed correct classification rates between 85 and 87.5%; for PC-LDA, the hit rate was over 85%. Both methods presented a 10-15% error. The results achieved through these studies evidence the potential of the alternative technology NIRS to be used in the Industry, providing agility to the analytical process of the ingredients. Therefore, decisions can be made assertively and thus ensure food quality and safety.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-09T11:13:44Z
2021-12-09T11:13:44Z
2021-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23198
dc.identifier.dark.fl_str_mv ark:/26339/001300000v2f4
url http://repositorio.ufsm.br/handle/1/23198
identifier_str_mv ark:/26339/001300000v2f4
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Medicina Veterinária
UFSM
Programa de Pós-Graduação em Medicina Veterinária
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Medicina Veterinária
UFSM
Programa de Pós-Graduação em Medicina Veterinária
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172399085125632