Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFTM |
Texto Completo: | http://bdtd.uftm.edu.br/handle/tede/838 |
Resumo: | Os microrganismos apresentam grande diversidade metabólica, sendo capazes de produzir diferentes metabólitos de interesse biotecnológico. Dentre tais compostos, podemos destacar as enzimas, as quais possuem grande versatilidade de aplicação em diversos setores industriais, como farmacêutico, ambiental, bioenergia, têxtil, cosmético e alimentício. O solo representa um ambiente ideal para bioprospecção de microrganismos produtores de enzimas devido à grande biodiversidade microbiana naturalmente existente. Esse trabalho descreve o isolamento de bactérias produtoras de celulases, amilases, xilanases ou lipases, a partir de amostras de solo coletadas em regiões de mata preservada no bioma Cerrado, em Uberaba, MG. A atividade enzimática foi confirmada em85 das 376 bactérias isoladas em meios contendo quatro diferentes substratos, carboximetilcelulose, amido, xilano e tween 80. Baseado na quantificação enzimática, cinco linhagens foram selecionadas como melhores produtores de celulases (AB-9 (5,0 U/mL), AB-1 (4,630 U/mL), MB-3 (4,236 U/mL), MP-7 (4,282 U/mL) e ME-2 (4,444 U/mL)), cinco de amilases (AP-14 (2,506 U/mL), AE-2 (2,452 U/mL), MB-1 (1,417 U/mL), MB-18 (2,443 U/mL) e MB-22 (1,816 U/mL)), cinco de xilanases (AP-6 (5,093 U/mL), MP-9 (5,028 U/mL), ME-1 (2,870 U/mL), ME-16 (2,986 U/mL) e ME-20 (4,630 U/mL)) e cinco de lipases (AB-2 (10,064 U/mL), AB-3 (9,722 U/mL), AP-4 (2,934 U/mL), MB-7 (2,387 U/mL) e MB-4 (3,140 U/mL)). De acordo com o sequenciamento parcial do gene 16S RNAr, dos 20 isolados selecionados como melhores produtores de enzimas, 19pertencem ao gênero Bacillus e um pertence ao gênero Lysinibacillus. Além disso, 10 espécies distintas foram identificadas, compreendendo B. siamensis, B. toyonensis, B. methylotrophicus, B. pseudomycoides, B. thuringiensis, B. drentensis, B. subtilis, B. velezensis, L. macroides e B. wiedmannii. A caracterização parcial das enzimas resultou em grande diversidade. Celulases de B. methylotrophicus MP-7 e B. methylotrophicusMB-3 apresentaram máxima atividade em pH neutro (7 e 8), enquanto o extrato obtido a partir deB. toyonensis MB-1 mostrou alta atividade amilolítica em pH neutros a básicos (6-10). Oisolado celulolítico B. siamensisAB-9e o amilolítico B. methylotrophicusAP-14, bem como os isolados xilanolíticos e lipolíticos produziram enzimas com máxima atividade em todos os pHsavaliados (2-12). Em relação à temperatura, B. drentensis ME-2 apresentou alta atividade celulolítica a 60 °C, mesma temperatura ótima para amilases de B. methylotrophicus AP-14, B. subtilis AE-2, B. toyonensis MB-18 e B. pseudomycoides MB-22.B. toyonensis MB-1 apresentou máxima atividade amilolítica entre 40-70 °C; e os demais isolados apresentaram atividade enzimática máxima em todas as temperaturas avaliadas (10-80 °C). Apenas as xilanases produzidas por B. toyonensis MP-9 foram induzidas na presença de Fe2+, sendo as demais atividades enzimáticas não influenciadas pela presença de íons metais. O Cerrado é um bioma que abriga grande diversidade microbiana e esse estudo foi o primeiro passo para a exploração do potencial enzimático de bactérias de solo do Cerrado brasileiro. |
id |
UFTM_1913128ac3202e982809795fb3bc2216 |
---|---|
oai_identifier_str |
oai:bdtd.uftm.edu.br:tede/838 |
network_acronym_str |
UFTM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository_id_str |
|
spelling |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológicoBioprospecção.Bacillus.Lysinibacillus.Atividade enzimática.Glicosilhidrolases.Lipases.Bioprospecting.Bacillus.Lysinibacillus.Enzymatic activity.Glycosylhydrolases.Lipases.Protease.Industrial biotechnology.Ciências BiológicasOs microrganismos apresentam grande diversidade metabólica, sendo capazes de produzir diferentes metabólitos de interesse biotecnológico. Dentre tais compostos, podemos destacar as enzimas, as quais possuem grande versatilidade de aplicação em diversos setores industriais, como farmacêutico, ambiental, bioenergia, têxtil, cosmético e alimentício. O solo representa um ambiente ideal para bioprospecção de microrganismos produtores de enzimas devido à grande biodiversidade microbiana naturalmente existente. Esse trabalho descreve o isolamento de bactérias produtoras de celulases, amilases, xilanases ou lipases, a partir de amostras de solo coletadas em regiões de mata preservada no bioma Cerrado, em Uberaba, MG. A atividade enzimática foi confirmada em85 das 376 bactérias isoladas em meios contendo quatro diferentes substratos, carboximetilcelulose, amido, xilano e tween 80. Baseado na quantificação enzimática, cinco linhagens foram selecionadas como melhores produtores de celulases (AB-9 (5,0 U/mL), AB-1 (4,630 U/mL), MB-3 (4,236 U/mL), MP-7 (4,282 U/mL) e ME-2 (4,444 U/mL)), cinco de amilases (AP-14 (2,506 U/mL), AE-2 (2,452 U/mL), MB-1 (1,417 U/mL), MB-18 (2,443 U/mL) e MB-22 (1,816 U/mL)), cinco de xilanases (AP-6 (5,093 U/mL), MP-9 (5,028 U/mL), ME-1 (2,870 U/mL), ME-16 (2,986 U/mL) e ME-20 (4,630 U/mL)) e cinco de lipases (AB-2 (10,064 U/mL), AB-3 (9,722 U/mL), AP-4 (2,934 U/mL), MB-7 (2,387 U/mL) e MB-4 (3,140 U/mL)). De acordo com o sequenciamento parcial do gene 16S RNAr, dos 20 isolados selecionados como melhores produtores de enzimas, 19pertencem ao gênero Bacillus e um pertence ao gênero Lysinibacillus. Além disso, 10 espécies distintas foram identificadas, compreendendo B. siamensis, B. toyonensis, B. methylotrophicus, B. pseudomycoides, B. thuringiensis, B. drentensis, B. subtilis, B. velezensis, L. macroides e B. wiedmannii. A caracterização parcial das enzimas resultou em grande diversidade. Celulases de B. methylotrophicus MP-7 e B. methylotrophicusMB-3 apresentaram máxima atividade em pH neutro (7 e 8), enquanto o extrato obtido a partir deB. toyonensis MB-1 mostrou alta atividade amilolítica em pH neutros a básicos (6-10). Oisolado celulolítico B. siamensisAB-9e o amilolítico B. methylotrophicusAP-14, bem como os isolados xilanolíticos e lipolíticos produziram enzimas com máxima atividade em todos os pHsavaliados (2-12). Em relação à temperatura, B. drentensis ME-2 apresentou alta atividade celulolítica a 60 °C, mesma temperatura ótima para amilases de B. methylotrophicus AP-14, B. subtilis AE-2, B. toyonensis MB-18 e B. pseudomycoides MB-22.B. toyonensis MB-1 apresentou máxima atividade amilolítica entre 40-70 °C; e os demais isolados apresentaram atividade enzimática máxima em todas as temperaturas avaliadas (10-80 °C). Apenas as xilanases produzidas por B. toyonensis MP-9 foram induzidas na presença de Fe2+, sendo as demais atividades enzimáticas não influenciadas pela presença de íons metais. O Cerrado é um bioma que abriga grande diversidade microbiana e esse estudo foi o primeiro passo para a exploração do potencial enzimático de bactérias de solo do Cerrado brasileiro.The microorganisms show great metabolic diversity, being able to produce different metabolites of biotechnological interest. Among these compounds, we can highlight the enzymes, which have great versatility of application in various industrial sectors, such as pharmaceutical, environmental, bioenergy, textile, cosmetic and food. The soil represents an ideal environment for bioprospecting of enzyme-producing microorganisms due to the great microbial biodiversity naturally existent. This work describes the isolation of cellulase, amylase, xylanase or lipase producing bacteria from soil samples collected in regions of preserved forest in the Cerrado biome, in Uberaba, MG. The enzymatica activity was confirmed in 85 of the 376 bacteria isolated in agar media containing four different substrates, carboxymethylcellulose, starch, xylan and tween 80. Based on the enzymatic quantification, five strains were selected as the best producers of cellulases (AB-9 (5.0 U/mL), AB-1 (4.630 U/mL), MB-3 (4.236 U/mL), MP-7 (4.282 U/mL) and ME-2 (4.444 U/mL)), fiveof amylases (AP-14 (2.506 U/mL), AE-2 (2.452 U/mL), MB-1 (1.417 U/mL), MB-18 (2.443 U/mL) and MB-22 (1.816 U/mL)), fiveof xylanases (AP-6 (5.093 U/mL), MP-9 (5.028 U/mL), ME-1 (2.870 U/mL), ME-16 (2.986 U/mL) and ME-20 (4.630 U/mL)),andfiveof lipases (AB-2 (10.064 U/mL), AB-3 (9.722 U/mL), AP-4 (2.934 U/mL), MB-7 (2.387 U/mL) and MB-4 (3.140 U/mL)).According to the partial sequencing of the 16S rRNA gene, of the 20 isolates selected as the best producers of enzymes, 19belong to the genus Bacillus, and one belongs to the genus Lysinibacillus. In addition, 10 distinct species were identified, comprising B. siamensis, B. toyonensis, B. methylotrophicus, B. pseudomycoides, B. thuringiensis, B. drentensis, B. subtilis, B. velezensis, L. macroides and B. wiedmannii. The partial characterization of the enzymes resulted in great enzymatic diversity. Cellulases of B. methylotrophicus MP-7 and B. methylotrophicus MB-3 showed maximum activity at neutral pH (7 and 8), while B. toyonensis MB-1 showed high amylolytic activity at neutral to basic pH (6-10). The cellulolytic isolate B. siamensis AB-9 and amylolytic B. methylotrophicus AP-14, along with the other xylanolytic and lipolytic isolates produced enzymes with maximum activity over the entire pH range evaluated (2-12). Regarding the temperature, B. drentensis ME-2 showed high cellulolytic activity at 60 °C, the same optimum temperature for amylases of B. methylotrophicus AP-14, B. subtilis AE-2, B. toyonensis MB-18 and B. pseudomycoides MB-22. B. toyonensis MB-1 showed maximum amylolytic activity in the range of 40-70 °C; and the other isolates showed maximum enzymatic activity at all evaluated temperatures (10-80 °C). Only the xylanases produced by B. toyonensis MP-9 were induced in the presence of Fe2+, and the other enzymatic activitieswere not influenced by the presence of metal ions.The Cerrado is a reservoir of microbial diversity and this study was the first step for the exploration of the enzymatic potential of soil bacteria from Brazilian Cerrado.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de MedicinaBrasilUFTMPrograma de Pós-Graduação em Ciências FisiológicasPAIVA, Aline Dias05567401655http://lattes.cnpq.br/6496294850014934ALVES, Bianca Aguiar2019-08-27T17:50:25Z2018-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfALVES, Bianca Aguiar. Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico. 2018. 159f . Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2018 .http://bdtd.uftm.edu.br/handle/tede/838porAcer Ö, Bekler FM, Pirinççioğlu H, Güven RG, Güven K. Purification and Characterization of Thermostable and Detergent-Stable α-Amylase from Anoxybacillus sp. AH1. Food Technol Biotechnol. 2016 Mar; 54 (1): 70–77. Acharya S, Chaudhary A. Bioprospecting Thermophiles for Cellulase Production: A Review. Braz J Microbiol. 2012 Jul-Sep; 43(3): 844–856. Ahmed I, Yokota A, Yamazoe A, Fujiwara T.Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1117-1125. Al-Abdalall AH, Al-Khaldi EM. Recovery of silver from used X-ray film using alkaline protease from Bacillus subtilis sub sp. Subtilis. Afr J Biotechnol. 2016 Jun 29; 15(26): 1413-1416. Almalki MA. Solid State Fermentation of Agro-Residues for the Production of Amylase from Bacillus subtilis for Industrial Applications. Int J Curr Microbiol App Sci. 2018; 7 (3): 1341-1348. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Out; 215 (3): 403-410. Alves PDD, Siqueira FF, Facchin S, Horta CCR, Victória JMN, Kalapothakis E. Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments. Open Microbiol J. 2014 Apr; 8: 25–31. Ammoneh H, Harba M, Akeed Y, Al-Halabi M, Bakri Y. Isolation and identification of local Bacillus isolates for xylanase biosynthesis. Iran J Microbiol. 2014 Apr; 6 (2): 127–132. Apun K, Jong BC, Salleh MA. Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J GenAppl Microbiol. 2000 Oct; 46(5): 263-267. Arifin AR, Kim SJ, Yim JH, Suwanto A, Kim HK. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic. J Microbiol Biotechnol. 2013 May; 23 (5): 661-667. Asha BM, Revathi M, Yadav A, Sakthivel N. Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol. 2012 Nov; 22 (11): 1501-1509. Awasthi MK, Wong JWC, Kumar S, Awasthi SK, Wang Q, Wang M, Ren X, Zhao J, Chen H, Zhang Z. Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. Bioresour Technol. 2018 Jan; 248 (Pt B): 160-170. Azadian F, Badoei-dalfard A, Namaki-Shoushtari A, Karami Z, Hassanshahian M. Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. J Genetic Eng Biotechnol. 2017 Jun; 15 (1): 187-196. Bajpai P. Application of Enzymes in the Pulp and Paper Industry. Biotechnol Prog. 1999 Mar; 15(2):147-57. Baker PJ, Numata K. Polymerization of Peptide Polymers for Biomaterial Applications. In: Yilmaz F. Polymer Science. InTech, 2013 Jan 23. Chap 9. Disponívelem: <http://www.intechopen.com/books/polymer-science/polymerization-of-peptide-polymers-for-biomaterial-applications>. Acessado em: 11 de Janeiro de 2017. Banerjee G, Scott-Craig JS, Walton JD. Improving Enzymes for Biomass Conversion: A Basic Research Perspective. BioEnerg Res. 2010 Mar; 3(1): 82-92. Bano S, Qader SAU, Aman A, Syed MN, Azhar A. Purification and Characterization of Novel α-Amylase from Bacillus subtilis KIBGE HAS. AAPS Pharm Sci Tech. 2011 Mar; 12 (1): 255–261. Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J. Application of Thermostable Xylanase of Bacillus pumilus in Textile Processing. Indian J Microbiol. 2012 Jun; 52(2): 222–229. Beattie AJ, Hay M, Magnusson B, de Nys R, Smeathers J, Vincent JFV. Ecology and bioprospecting. Austral Ecol. 2011 May 1; 36 (3): 341-356. Beloqui A, María PD, Golyshin PN, Ferrer M. Recent trends in industrial microbiology. CurrOpinMicrobiol. 2008 Jun; 11 (3):240-248. Bhalla A, Bischoff KM, Sani RK. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WsUcF1 utilizing lignocellulosic biomass. Front BioengBiotechnol. 2015 Jun 16; 3:84. Bhandari V, Ahmod NZ, Shah HN, Gupta RS.Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol. 2013 Jul;63(Pt 7):2712-2726. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000 Aug; 18 (5):355-383. Bhosale H, Shaheen U, Kadam T, Characterization of a Hyperthermostable Alkaline Lipase from Bacillus sonorensis 4R. Enzy Res. 2016; 2016:e4170684, 11 pages. Bibi Z, Ansari A, Zohra RR, Aman A, Qader SAU. Production of xylan degrading endo-1, 4-b-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radia Res Appl Sci. 2014 Oct; 7 (4): 478-485 Bisht SS, Panda AA. Biochemical Characterization and 16S rRNA Sequencing of Few Lipase-Producing Thermophilic Bacteria from Taptapani Hot Water Spring, Orissa, India. Biotechnol Res Int. 2011 Apr; 2011: 452710. Bocchini DA, Gomes E, Da Silva R. Xylanase production by Bacillus circulans D1 using maltose as carbon source. Appl Biochem Biotechnol. 2008 Mar; 146 (1-3): 29-37. Boucherba N, Gagaoua M, Bouanane-Darenfed A, Bouiche C, Bouacem K, Kerbous MY, Maafa Y, Benallaoua S. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. Bioresour Bioprocess. 2017 Jul; 4 (1): 29. Brackin R, Robinson N, Lakshmanan P, Schmidt S. Microbial function in adjacent subtropical forest and agricultural soil. Soil BiolBiochem. 2013 Feb; 57: 68-77. Brasil, MMA – Ministério do Meio Ambiente. 2018. Disponível em: <http://www.mma.gov.br/biodiversidade/convenção-da-diversidade-biológica>. Acessado em 12 de Maio de 2018. Brasil, MDIC - Ministério da Indústria, Comércio Exterior e Serviços. 2018. Disponível em: <http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior/comex-vis/frame-ppi?ppi=3161>. Acessado em 12 de Maio de 2018. Bravo D, Braissant O, Cailleau G, Verrecchia E, Junier P. Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch Microbiol. 2015 Jan; 197 (1):65-77. Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem. 2003 May 30; 38(10):1397–1403. Butt MS, Tahir-Nadem M, Ahmad Z, Sultan MT. Xylanases and Their Applications in Baking Industry. Food Tech Biotechnol. 2008 Jan; 46(1): 22-31. Chakdar H, Kumar M, Pandiyan K, Singh A, Nanjappan K, Kashyap PL, Srivastava AK. Bacterial xylanases: biology to biotechnology. 3 Biotech. 2016 Dec; 6(2): 150. Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G, Wang CF, Qian AD. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech. 2018 Feb; 8 (2): 114. Cheng J, Huang S, Jiang H, Zhang Y, Li L, Wang J, Fan C. Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World J Microbiol Biotechnol. 2016 Jan; 32 (1): 12. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsisfibuligera and its applications in biotechnology. Biotechnol Adv. 2009 Jul-Aug; 27(4):423-431. Chikerema SM, Pfukenyi DM, Hang'ombe BM, L'Abee-Lund TM, Matope G. Isolation of Bacillus anthracis from soil in selected high-risk areas of Zimbabwe. J Appl Microbiol. 2012 Dec; 113 (6) :1389-1395. Cho SJ, Kim MH, Lee YO. Effect of pH on soil bacterial diversity. J Ecol Environ. 2016 Dec; 40: 10. Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Dueramae S. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology. Biotechnol Rep. 2016 Jun; 10: 17–28. Cordeiro CAM, Martins MLL, Luciano AB; da Silva RF. Production and properties of Xylanase from thermophilic Bacillus sp. Braz Arch Biol Technol. 2002 Dec; 45(4): 413-418. Couto SR, Sanromán MA. Application of solid-state fermentation to food industry - A review. J Food Eng. 2006 Oct; 76(3): 291-302. Cuesta SM, Rahman SA, Furnham N, Thornton JM. The Classification and Evolution ofEnzyme Function. Biophy J. 2015 Sep;109: 1082–1086. Cui H,Yang M, Wang L, Xian CJ. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease. PLoS ONE. 2015 Dec; 10(12): e0146067. Dalvi P, Anthappan P, Darade N, Kanoongo N, Adivarekar R. Amylase and pectinase from single source for simultaneous desizing and scouring. Indian J Fibre Text Res. 2007 Dec; 32(4): 459-465. Dash BK, Rahman MM, Sarker PK. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. Biomed Res Int. 2015 Jun; 2015: 859805. David S, Femi B, Gbenga A, Saanu AB. Purification and Characterization of α-Amylase from Bacillus subtilis Isolated from Cassava Processing Sites. J Bioremediat Biodegrad 2017 Oct; 8 (6):1-7. Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SMA. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springer Plus. 2013 Dec; 2 (1): 154. de Azeredo LAI, Freire DMG, Soares RMA, Leite SGF, Coelho RRR. Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzy Microbial Technol. 2004 Mar; 34 (3): 354–358. Devaraj K, Aathika S, Periyasamy K, Periyaraman PM, Palaniyandi S, Subramanian S. Production of thermostable multiple enzymes from Bacillus amyloliquefaciens KUB29. Nat Prod Res. 2018 Jan: 1-4. https://doi.org/10.1080/14786419.2018.1425857 Dienes D, Egyházi A, Réczey K. Treatment of recycled fiber with Trichoderma cellulases. IndCrops Prod. 2004 Jul; 20(1): 11-21. Dionisi HM, Lozada M, Olivera NL. Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argent Microbiol. 2012 Jan-Mar; 44 (1): 49-60. Divakaran D, Chandran A, Chandran RP. Comparative study on production of a-Amylase from Bacillus licheniformis strains. Braz J Microbiol. 2011 Dec; 42 (4): 1397–1404. dos Santos ER, Teles ZNS, Campos NM, de Souza DAJ, Bispo ASR, Nascimento RP. Production of α-Amylase from Streptomyces sp. SLBA-08 Strain Using Agro-Industrial By-Products. Brazilian Arch Biol Technol. 2012 Sep; 55 (5): 793-800. Dutta P, Deb A, Majumdar S. Optimization of the Medium for the Production of Extracellular Amylase by the Pseudomonas stutzeri ISL B5 Isolated from Municipal Solid Waste. Int J Microbiol. 2016 Dec; 2016: 4950743. Du R, Yan J, Li S, Zhang L, Zhang S, Li J, Zhao G, Qi P. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonastaiwanensis. Biotechnol Biofuel. 2015; 8: 10. Ellaiah P, Srinivasulu B, Kunamneni A. A review on microbial alkaline proteases. J Sci Ind Res. 2002 Sep; 61(9): 690-704. Endo K, Hakamada Y, Takizawa S, Kubota H, Sumitomo N, Kobayashi T, Ito S. A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol. 2001 Oct; 57 (1-2): 109-16. Farrokh P, Yakhchali B, Karkhane AA. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12. Braz J Microbiol. 2014; 45 (2): 677–687. Fossi BT, Tavea F, Fontem LA, Ndjouenkeu R, Wanjia S. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnol Rep. 2014 Dec; 4: 99–106. Fotouh DMA, Bayoumi RA, Hassan MA. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry. Enzyme Res. 2016 Jan; 2016: 9034364. Fuwa H. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J Biochem. 1954 Sep; 41(5): 583-603. Gallegos-Monterrosa R, Maróti G, Bálint B, Kovács AT. Draft Genome Sequence of the Soil Isolate Lysinibacillus fusiformis M5, a Potential Hypoxanthine Producer. Genome Announc. 2016 Nov; 4 (6): e01272-16. Gaur R, Tiwari S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 2015 Mar 19; 15:b19. Ghio S, Insani EM, Piccinni FE, Talia PM, Grasso DH, Campos E. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Microbiol Res. 2016 Mar; 186: 16–26. Ghori MI, Iqbal MJ, Hameed A. Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Braz J Microbiol. 2011 Mar; 42 (1): 22–29. Global Market Insights. Nome Enzymes Market Size By Product (Proteases, Lipases, Carbohydrases, Polymerases & Nucleases), By Application (Detergents, Food & beverages, Animal Feed, Biofuels), Industry Analysis Report, Regional Outlook (U.S., Canada, Germany, UK, France, Italy, Sweden, Austria, Poland, Russia, China, India, Japan, Indonesia, Thailand, Malaysia, Australia, Brazil, Argentina, Mexico, South Africa, UAE, Saudi Arabia, Kuwait, Egypt), Growth Potential, Price Trends, Competitive Market Share & Forecast, 2016 – 2024. 2016. Disponível em: <https://www.gminsights.com/industry-analysis/enzymes-market>. Acessado em 6 de Janeiro de 2017. Goldbeck R, Filho FM. Screening, Characterization, and Biocatalytic Capacity of Lipases Producing Wild Yeasts from Brazil Biomes. Food Sci Biotechnol. 2013 Feb; 22 (1): 79-87. Gopinath SCB, Anbu P, Arshad MKM, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. Biotechnological Processes in Microbial Amylase Production. BioMed ResInter. 2017 Feb; 2017: 9 pages, ID 1272193. Goyal V, Mittal A, Bhuwal AK, Singh G, Yadav A, Aggarwal NK. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions. Biotechnol Res Int. 2014 Apr; 2014: 651839. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. ProcessBiochem. 2003 Jun 30; 38(11): 1599-1616. Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purificationand biochemical properties. Appl MicrobiolBiotechnol. 2004 Jun; 64(6): 763-781. Gurung N, Ray S, Bose S, Rai V.A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. Biomed Res Int. 2013; 2013: 18 pages. Hankin R, Anagnostakis SL. The use of solid media for detection of enzymes production by fungi. Mycol. 1975; 67 (3): 596-607. Harris AD, Ramalingam C. Xylanases and its Application in Food Industry: A Review. J Exp Sci. 2010; 1(7): 1-11. Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzy Microbiol Tech. 2006 Jun 26; 39(2): 235–251. Hirano K, Kurosaki M, Nihei S, Hasegawa H, Shinoda S, Haruki M, Hirano N. Enzymatic diversity of the Clostridium thermocellumcellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci Rep. 2016 Oct 19; 6: 35709. Hmidet N, Ali NE-H, Haddar A, Kanoun S, Alya S-K, Nasri M. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. BiochemEng J. 2009 Dec 1; 47(1-3): 71-79. Huang S, Deng G, Yang Y, Wu Z, Wu L. Optimization of Endoglucanase Production from a Novel Bacterial Isolate, Arthrobacter sp. HPG166 and Characterization of Its Properties. Braz Arch Biol Technol. 2015 Oct; 58 (5): 692-701. Huse SM, Desthlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable TagSequencing. PLoS Genet. 2008 Nov; 4 (11): e1000255. Hyun HH, Zeikus JG. General Biochemical Characterization of Thermostable Extracellular beta-Amylase from Clostridium thermosulfurogenes. Appl Environ Microbiol. 1985 May; 49(5): 1162-1167. Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring. Appl Biochem Biotechnol. 2017 Aug; 182 (4): 1390–1402. Ismaya WT, Hasan K, Subroto T, Natalia D, Soemitro S. Chromatography as the Major Tool in the Identification and the Structure-Function Relationship Study of Amylolytic Enzymes from SaccharomycopsisFibuligera R64. In: Calderon L. Chromatography - The Most Versatile Method of Chemical Analysis. Intech. 2012 Oct 24. Chap 11. Disponívelem: <http://www.intechopen.com/books/chromatography-the-most-versatile-method-of-chemical-analysis/chromatography-as-the-major-tool-in-the-identification-and-the-structure-function-relationship-study>. Acessado em 12 de Janeiro de 2017. Jaeger KE, Reetz MT. Microbial lipases formversatile tools for biotechnology. Trends Biotechnol. 1998 Sep; 16(9): 396-403. Jiewei T, Zuchao L, Peng Q, Lei W, Yongqiang T. Purification and Characterization of a Cold-Adapted Lipase from Oceanobacillus Strain PT-11. Plos One. 2014 Jul; 9(7): e101343. Jisha VN, Smitha RB, Pradep S, Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S. Versatility of microbial proteases. Adv Enzy Res. 2013 Sep; 1(3): 39-51. Joseph B, Ramteke PW. Extracellular solvent stable cold-active lipase from psychrotrophic Bacillus sphaericus MTCC 7526: partial purification and characterization. Ann Microbiol. 2013 Feb; 63: 363–370. Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol Adv. 2008 Sep-Oct; 26(5): 457-470. Jung J, Philippot L, Park W. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Sci Rep. 2016 Mar; 6: 23012. Jung MY, Kim JS, Paek WK, Styrak I, Park IS, Sin Y, Paek J, Park KA, Kim H, Kim HL, Chang YH.Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus.Int J Syst Evol Microbiol. 2012 Oct;62(Pt 10):2347-2355. Kamble RD, Jadhav AR. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation. Inter J Microbiol. 2012; 2012: e683193, 8 pages. Kanmani P, Kumaresan K, Aravind J. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase. Braz J Microbiol. 2015 Oct-Dec; 46 (4): 1235-1243. Karigar CS, Rao SS. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzy Res. 2011; 2011: 11pages. Kaseke ZM, Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation. Sustain. 2016; 8 (1168):10.3390. Khandeparker R, Parab P, Amberkar U. Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues. Food Technol Biotechnol. 2017 Jun; 55 (2): 164–172. Kim Y-K, Lee S-C, Cho Y-Y, Oh Y-J, Ko YH. Isolation of Cellulolytic Bacillus subtilis Strains from Agricultural Environments. ISRN Microbiol. 2012 Feb; 2012: 650563. Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. CurrOpinBiotechnol. 2002 Aug; 13(4): 345-351. Knob A, Terrasan CRF, Carmona EC. β-Xylosidases from filamentous fungi: an overview. W J MicrobiolBiotechnol. 2010 Mar; 26(3): 389-407. Koc M, Cokmus C, Cihan AC. The genotypic diversity and lipase production of some thermophilic bacilli from different genera. Braz J Microbiol. 2015 Dec; 46 (4): 1065–1076. Kong D, Wang Y, Zhao B, Li Y, Song J, Zhai Y, Zhang C, Wang H, Chen X, Zhao B, Ruan Z. Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol. 2014 Aug; 64 (8): 2593-2598. Kubicek CP. Systems biological approaches towards understanding cellulose production by Trichoderma reesei. J Biotechnol. 2013 Jan 20; 163(2): 133–142. Kumar L, Kumar D, Nagar S, Gupta R, Garg N, Kuhad RC, Gupta VK. Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech. 2014 Aug; 4 (4): 345–356. Kumar PS, Yaashikaa PR, Saravanan A. Isolation, characterization and purification of xylanase producing bacteria from sea sediment. Biocat Agri Biotechnol. 2018 Jan; 13 (2018): 299-303. Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J IndMicrobiol Biotechnol. 2008 May; 35(5): 377-391. Kumar S, Haq I, Prakash J, Singh SK, Mishra S, Raj A. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech. 2017 May; 7 (1): 20. Kumar S, Khare SK. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzy Res. 2015; 2015: e859485, 9 pages. Latorre JD, Velasco XH, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, Bielke LR, Hargis BM,Tellez G. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Front Vet Sci. 2016 Oct; 3: 95. Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009 Aug; 75(15): 5111-5120. Li S, Yang X, Yang S, Zhu M, Wang X. Technology Prospecting on Enzymes: Application, Marketing and Engineering. Comput Struct Biotechnol J. 2012; 2(3): e201209017. Lian J, Choi J, Tan YS, Howe A, Wen Z, Jarboe LR. Identification of Soil Microbes Capable of Utilizing Cellobiosan. PLoS One. 2016 Feb; 11 (2): e0149336. Liang Y-L, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1. Biomed Res Int. 2014 Jun; 2014: 512497. Lisov AV, Belova OV, Lisova ZA, et al. Xylanases of Cellulomonasflavigena: expression, biochemical characterization, and biotechnological potential. AMB Express. 2017; 7: 5. Liu W, Li M, Yan Y. Heterologous expression and characterization of a new lipase from Pseudomonas fluorescens Pf0–1 and used for biodiesel production. Sci Rep. 2017 Nov; 7: 15711. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016 Apr; 6: 25279. LPSN – List of Prokaryotic names with Standing in Nomenclature. Bacillus. <http://www.bacterio.net/bacillus.html> Acessado em 29 de Junho de 2018. LPSN – List of Prokaryotic names with Standing in Nomenclature. Lysinibacillus.<http://www.bacterio.net/lysinibacillus.html> Acessado em 29 de Junho de 2018. Lu M, Wang S, Fang Y, Li H, Liu S, Liu H. Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. Protein J. 2010 Nov; 29 (8): 591-597. Madar D, Dekel E, Bren A, Zimmer A, Porat Z, Alon U. Promoter activity dynamics in the lag phase of Escherichia coli. BMC Syst Biol. 2013 Dec; 7:136. Maki M, Leung KT, Qin W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J BiolSci. 2009 Jul 29; 5(5): 500–516. Martínez-Rosales C, Castro-Sowinski S. Antarctic bacterial isolates that produce cold-active extracelular proteases at low temperature but are active and stable at high temperature. Polar Res. 2011 Apr 22; 30: 7123. Maurer K-H. Detergent proteases. CurrOpinBiotechnol. 2004 Aug; 15(4): 330-334. Mechri S, Kriaa M, Berrouina MBE, Benmrad MO, Jaouadi NZ, Rekik H, Bouacem K, Darenfed AB, Chebbi A, Sayadi S, Chamkha M, Bejar S, Jaouadi B. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol. 2017 Aug; 101: 383-397. Meidong R, Doolgindachbaporn S, Jamjan W, Sakai K, Tashiro Y, Okugawa Y, Tongpim S. A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (Phak-dong) for potential use as a feed supplement in aquaculture. J Gen Appl Microbiol. 2017 Sep 5; 63 (4): 246-253. Meilleur C, Hupé JF, Juteau P, Shareck F. Isolation and characterization of a new alkali-thermostable lipase cloned from a metagenomic library. J Ind Microbiol Biotechnol. 2009 Jun; 36 (6): 853-861. Meng F, Ma L, Ji S, Yang W, Cao B. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett Appl Microbiol. 2014 Sep; 59 (3): 306-312. Metzger JO, Bornscheuer U. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl MicrobiolBiotechnol. 2006 Jun; 71(1): 13-22. Miller GL. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. 1959 Mar; 31(3): 426–428. Mobarak-Qamsari E, Kasra-Kermanshahi R, Moosavi-nejad Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran J Microbiol. 2011 Jun; 3(2): 92–98. Murugan S, Arnold D, Pongiya UD, Narayanan PM. Production of Xylanase from Arthrobacter sp. MTCC 6915 Using Saw Dust As Substrate under Solid State Fermentation. Enzy Res. 2011 Aug; 2011: 696942. Nascimento RP, Coelho RRR, Marques S, Alves L, Gírio FM, Bon EPS, Amaral-Collaço MT. Production and partial characterization of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzy Microbiol Tech. 2002 Sep; 31 (4): 549–555. Nascimento RP, d'Avila-Levy CM, Souza RF, Branquinha MH, Bon EP, Pereira N Jr, Coelho RR. Production and partial characterization of extracellular proteinases from Streptomyces malaysiensis, isolated from a Brazilian cerrado soil. Arch Microbiol. 2005 Nov; 184 (3): 194-8. Nagar S, Mittal A, Gupta VK. A Cost Effective Method for Screening and Isolation of Xylan Degrading Bacteria Using Agro Waste Material. Asi J Bio Sci. 2012 Aug; 5(8): 384-394. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. Eur J Soil Sci. 2003 Dec; 54(4): 655-670. Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Housni SKA, Mabood F, Khan AL, Farooq S, Abbas G, Harrasi AA. Exploring the Potentials of Lysinibacillus sphaericus ZA9 for Plant Growth Promotion and Biocontrol Activities against Phytopathogenic Fungi.Front Microbiol. 2017 Aug; 8: 1477. NCBI-National Center of Biotechnology Information, Taxonomy Browser <https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1386&lvl=3&lin=f&keep=1&srchmode=1&unlock> Acessado em 29 de Junho de 2018. Niu Q, Zhang G, Zhang L, Ma Y, Shi Q, Fu W. Purification and characterization of a thermophilic 1,3-1,4-β-glucanase from Bacillus methylotrophicus S2 isolated from booklice. J Biosci Bioeng. 2016 May; 121 (5): 503-508. Noormohamadi R, Tabandeh F, Shariati P, Otadi M. Characterization of a lipase from a newly isolated Pseudomonas sp. Iran J Microbiol. 2013 Dec; 5 (4): 422–427. Oh H, Seo DJ, Jeon SB, Park H, Jeong S, Chun HS, Oh M, Choi C. Isolation and Characterization of Bacillus cereus Bacteriophages from Foods and Soil. Food Environ Virol. 2017 Sep; 9 (3): 260-269. Oliveira SD, Santos LR, Schuch DMT, Silva AB, Salle CTP, Canal CW. Detection and identification of salmonellas from poultry-related samples by PCR. Vet Microbiol. 2002; 87: 25-35. Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. BioTech. 2000 Aug; 74(1): 69-80. Patil KJ, Chopda MZ, Mahajan RT. Lipase biodiversity. Indian J Sci Technol. 2011 Aug; 4(8): 971-982. Paudel YP, Qin W. Characterization of Novel Cellulase-producing Bacteria Isolated From Rotting Wood Samples. Appl Biochem Biotechnol. 2015 Nov; 177 (5): 1186-98. Peixoto-Nogueira S de C, Michelin M, Betini JHA, Jorge JA, Terenzi HF, Polizeli MLTM. Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J IndMicrobiolBiotechnol. 2009 Jan; 36(1): 149-155. Peng Q, Wang X, Shang M, Huang J, Guan G, Li Y, Shi B. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb Cell Fact. 2014 Jan 4; 13: 1. Pinjari AB, Kotari V. Characterization of extracellular amylase from Bacillus sp. Strain RU1. J Appl Biol Biotechnol. 2018 May; 6 (3): 29-34. Privé F, Newbold CJ, Kaderbhai NN, Girdwood SG, Golyshina OV, Golyshin PN, Scollan ND, Huws SA. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl Microbiol Biotechnol. 2015 Jan; 99 (13): 5475–5485. Pohlon E, Fandino AO, Marxsen J. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting. PLoS One. 2013 Dec; 8 (12): e83365. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl MicrobiolBiotechnol. 2005 Jun; 67(5): 577-591. Potprommanee L, Wang X-Q, Han Y-J, Nyobe D, Peng YP, Huang Q, Liu J, Liao YL, Chang K-L. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One. 2017 Apr; 12 (4): e0175004. Prado HFA, Pavezzi FC, Leite RSR, de Oliveira VM, Sette LD, da Silva R. Screening and Production Study of Microbial Xylanase Producers from Brazilian Cerrado. Appl Biochem Biotechnol. 2010 May; 161 (8): 333–346. Prakash P, Jayalakshmi SK, Prakash B, Rubul M, Sreeramulu K. Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World J Microbiol Biotechnol. 2012 Jan; 28 (1): 183-192. Purves K, Macintyre L, Brennan D, Hreggviðsson GO, Kuttner E, Ásgeirsdóttir ME,Young LC, Green DH,Ebel RE, Duncan KR. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting. Metabolites. 2016 Mar; 6 (1): 2. Quirino BF, Pappas GJ, Tagliaferro AC, Collevatti RG, Neto EL, Silva MR da, Bustamante MM, Krüger RH. Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res. 2009; 164(1): 59-70. Rabbani M, Bagherinejad MR, Sadeghi HMM, Shariat ZS, Etemadifar Z, Moazen F, Rahbari M, Mafakher L, Zaghian S. Isolation and characterization of novel thermophilic lipase-secreting bacteria. Braz J Microbiol. 2013 Dec; 44 (4): 1113–1119. Rabbani M, Sadeghi HMM, Moazen F, Rahimi M, Salehi G. Cloning and Expression of Randomly Mutated Bacillus subtilis α-Amylase Genes in HB101. Biotechnol Res Int. 2011 Jun; 2011: 305956. Rabha M, Sharma S, Acharjee S, Sarmah BK. Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India. 3 Biotech. 2017 Oct; 7 (5): 303. Rahman SS, Siddique R, Tabassum N. Isolation and identification of halotolerant soil bacteria from coastal Patenga area. BMC Res Notes. 2017 Oct; 10: 531. Raj A, Kumar S, Singh SK, Kumar M. Characterization of a New Providencia sp. Strain X1 Producing Multiple Xylanases on Wheat Bran. Sci World J. 2013 Nov; 2013: 386769. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and Biotechnological Aspects of Microbial Proteases. MicrobiolMolBiol Rev. 1998 Sep; 62(3): 597–635. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK. Characterization of thermostable cellulases produced by Bacillus and Geobacillusstrains.Bioresour Technol. 2010 Nov; 101(22): 8798-8806. Ratanakhanokchai K, Waeonukul R, Pason P, Tachaapaikoon C, Kyu KL, Sakka K, Kosugi A, Mori Y. Paenibacilluscurdlanolyticus Strain B-6 Multienzyme Complex: A Novel System for Biomass Utilization. In: Matovic MD. Biomass Now - Cultivation and Utilization. InTech, 2013 Apr 30. Chap 16. Disponível em: <http://www.intechopen.com/books/biomass-now-cultivation-and-utilization/paenibacillus-curdlanolyticus-strain-b-6-multienzyme-complex-a-novel-system-for-biomass-utilization>. Acessado em: 11 de Janeiro de 2017. Romano N, Gioffré A, Sede SM, Campos E, Cataldi A, Talia P. Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest. Curr Microbiol. 2013 Aug; 67 (2): 138-147. Rooney AP, Price NPJ,Ehrhardt C, Swezey JL, Bannan JD. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov.Int J Syst Evol Microbiol. 2009 Oct;59(Pt 10):2429-36. Sahoo RK, Subudhi E, Kumar M. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation. Lett Appl Microbiol. 2014 Jun; 58 (6):610-6. Sanjivkumar M, Silambarasan T, Palavesam A, Immanuel G. Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr Purif. 2017 Feb; 130: 1-12. Saranya P, Kumari HS, Rao BP, Sekaran G. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater. Send to Environ Sci Pollut Res Int. 2014 Mar; 21 (5): 3907-3919. Saravanan D, Radhakrishan M, Balagurunathan R. Bioprospecting of bacteria from less explored ecosystem. J Chem Pharm Res. 2015; 7(3): 852-857. Saxena R, Singh R. Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp.. Braz J Microbiol. 2011 Dec; 42 (4): 1334–1342. Sepahy AA, Ghazi S, Sepahy MA. Cost-Effective Production and Optimization of Alkaline Xylanase by Indigenous Bacillus mojavensis AG137 Fermented on Agricultural Waste. Enzyme Res. 2011 Aug; 2011: 593624. Sethi S, Datta A, Gupta BL, Gupta S. Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnol. 2013 Feb 19; 2013:985685. Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E. Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. Appl Environ Microbiol. 2001 Sep; 67(9): 4215-4224. Shafee N, Aris SN, Rahman RNZA, Basri M, Salleh AB. Optimization of Environmental and Nutritional Conditions for the Production of Alkaline Protease by a Newly Isolated Bacterium Bacillus cereus Strain 146. J Appl Sci Res. 2005; 1(1): 1-8. Shah S, Sharma S, Gupta MN. Biodiesel Preparation by Lipase-Catalyzed Transesterification of Jatropha Oil. Energ Fuel. 2004 Jan 3; 18(1): 154-159. Sharma M, Mehta S, Kumar A. Purification and Characterization of Alkaline Xylanase Secreted from Paenibacillus macquariensis. Adv Microbiol. 2013 Mar; 3 (1): 32-41. Sharma P, Sharma N, Pathania S, Handa S. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. J Gen Eng Biotechnol. 2017 Dec; 15 (2): 369-377. Siala R, Hammemi I, Sellimi S, Vallaeys T, Kamoun AS, Nasri M. Arthrobacterarilaitensis Re117 as a Source of Solvent-Stable Proteases: Production, Characteristics, Potential Application in the Deproteinization of Shrimp Wastes and Evaluation in Liquid Laundry Commercial Detergents. Adv BiosciBiotechnol. 2015 Feb 15; 6: 105-119. Seong Y, Ryu ST, Lee SB, Moon TW. Purification and Characterization of Branching Specificity of a Novel Extracellular Amylolytic Enzyme from Marine HyperthermophilicRhodothermus marinus. J MicrobiolBiotechnol. 2008; 18(3): 457–464. Simair AA, Qureshi AS, Khushk I, Ali CH, Lashari S, Bhutto MA, Mangrio GS, Lu C. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. Biomed Res Int. 2017 Jan; 2017: 9173040. Singh JS, Pandey VC, Singh DP. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ. 2011 Mar; 140(3): 339–353. Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 2016 Dec; 6(2): 174. Sirisha E, Rajasekar N, Narasu ML. Isolation and Optimization of Lipase Producing Bacteria from Oil Contaminated Soils. Adv Biol Res. 2010 Jan; 4(5): 249-252. Sivaramakrisshman S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. α-Amylases from Microbial Sources – An Overview on Recent Developments. FoodTechnolBiotechnol. 2006 Apr; 44(2): 173-184. Soni A, Oey I, Silcock P, Bremer P. Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies. Compr Rev Food Sci Food Saf. 2016 Nov; 15 (6): 1139-1148. Souza PM, Bittencourt ML de A, Caprara CC, Freitas M de, Almeida RPC de, Silveira D, Fonseca YM, Filho EXF, Junior AP, Magalhães PO. A biotechnology perspective of fungal proteases. Braz J Microbiol. 2015 June; 46(2): 337-346. Souza PM, Magalhães PO. Application of Microbial α-amilase in Industry - A Review. Braz J Microbiol. 2010 Oct-Dec; 41(4): 850–861. Srinivas TNR, Kumar PA, Madhu S, Sunil B, Sharma TVRS, Shivaji S. Cesiribacterandamanensis gen. nov., sp. nov., isolated from a soil sample from a mud volcano. Int J Syst EvolMicrobiol. 2011 Jul 23; 61(7):1521-1524. Sumantha A, Larroche C, Pandey A. Microbiology and Industrial Biotechnology of Food-Grade Proteases: A Perspective. Food Technol Biotechnol. 2006 Jan; 44(2): 211-220. Sun JQ, Xu L, Wu XL. Lysinibacillus alkalisoli sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol. 2017 Jan; 67 (1): 67-71. Sundarram A, Murthy TPK. α-Amylase Production and Applications: A Review. J Appl Environ Microbiol. 2014 Jun; 2(4): 166-175. Tallur PN, Sajjan DB, Mulla SI, Talwar MP, Pragasam A, Nayak VM, Ninnekar HZ, Bhat SS. Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech. 2016 Jun; 6 (1): 28. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982 Apr; 43(4): 777–780. Thakur S, Sharma NK, Thakur N, Savitri, Bhalla TC. Organic solvent tolerant metallo protease of novel isolate Serratia marcescens PPB-26: production and characterization. 3 Biotech. 2016 Dec; 6(2): 180. Tiwari R, Singh PK, Singh S, Nain PKS, Nain L, Shukla P. Bioprospecting of novel thermostable β-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis. Biotechnol Biofuels. 2017 Oct; 10: 246. Torsvik V, Ovreas L, Thingstad TF. Prokaryotic Diversity-Magnitude, Dynamics, and Controlling Factors. Science. 2002 May 10; 296(5570):1064-1066. Townsley L, Caro L, Kelkar H,Shank EA. Draft Genome Sequence of Bacillus luciferensis Isolated from Soil. Genome Announc. 2016 Oct; 4 (5): e01140-16. van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002 Mar 28; 94(2):137-155. Verma N, Thakur S, Bhatt AK. Microbial Lipases: Industrial Applications and Properties (A Review). Int Res J Biol Sci. 2012 Dec; 1(8): 88-92. Vester JK, Glaring MA, Stougaard P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremoph. 2015 Jan;19(1):17-29. Vijayaraghava P, Vincent SGP. A simple method for the detection of protease activity on agar plates using Bromocresolgreen Dye. J Biochem Tech. 2013 Jun; 4 (3): 628-630. Vilain S, Luo Y, Hildreth MB, Brözel VS. Analysis of the Life Cycle of the Soil Saprophyte Bacillus cereus in Liquid Soil Extract and in Soil. Appl Environ Microbiol. 2006 Jul; 72 (7): 4970–4977. Wang F, Li F, Chen G, Liu W. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res. 2009 Nov; 164 (6): 650-657. Wang P, Wang P, Tian J, Yu X, Chang M, Chu X, Wu N. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep. 2016 Feb; 6: 22229. Wang Q, Hou Y, Ding Y, Yan P. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Mol Biol Rep. 2012 Jun; 39: 9233–9238. Watanabe H, Tokuda G. Animal cellulases. Cell Mol Life Sci. 2001 Aug; 58(9): 1167-1178. Willerding AL, de Oliveira LA, Moreira FW, Germano MG, Chagas AF. Lipase Activity among Bacteria Isolated from Amazonian Soils. Enzyme Res. 2011 Oct; 2011: 720194. Winkler UK, Stuckmann M. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol. 1979 Jun; 138(3): 663–670. Wohlgemuth R. Biocatalysis-key to sustainable industrial chemistry. CurrOpinBiotechnol. 2010 Dec; 21(6): 713-724. Woo HL, Hazen TC, Simmons BA, DeAngelis KM. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol. 2014 Feb; 37 (1): 60-67. Wu B, Zheng S, Pedroso MM, Guddat LW, Chang S, He B, Schenk G. Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnol Biofuels. 2018 Jan; 11: 20. Xie F, Quan S, Liu D, Ma H, Li F, Zhou F, Chen G. Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2. Process Biochem. 2014; 49 (1): 47–53. Yamada C, Sawano K, Iwase N, Matsuoka M, Arakawa T, Nishida S, Fushinobu S. Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501. J Gen Appl Microbiol. 2017 Jan 25; 62 (6): 313-319. Ye M, Sun L, Yang R, Wang Z, Qi KZ. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. R Soc Open Sci. 2017 Oct; 4 (10): 171012. Yin LJ, Lin HH, Chiang YI, Jiang ST. Bioproperties and purification of xylanase from Bacillus sp. YJ6. J Agric Food Chem. 2010 Jan 13; 58 (1): 557-562. Yoon KH. Cloning of a Bacillus subtilis AMX-4 xylanase gene and characterization of the gene product. J Microbiol Biotechnol. 2009 Dec; 19 (12): 1514-1519. Zarafeta D, Kissas D, Sayer C, Gudbergsdottir SR, Ladoukakis E, Isupov MN, Chatziioannou A, Peng X, Littlechild JA, Skretas G, Kolisis FN. Discovery and Characterization of a Thermostable and Highly Halotolerant GH5 Cellulase from an Icelandic Hot Spring Isolate. PLoS One. 2016 Jan 7; 11 (1): e0146454. Zhang Y-HP, Himmel ME, Mielenz JR. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv. 2006 Sep-Oct; 24(5): 452-481. Zhao F, Feng Y, Chen R, Zhang J, Lin X.Lysinibacillus alkaliphilus sp. nov., an extremely alkaliphilic bacterium, and emended description of genus Lysinibacillus.Int J Syst Evol Microbiol. 2015 Aug;65(8):2426-2431. Zhao S, Yan T, He Q, Yang L, Yin X, Li C, Mao L, Liao LS, Huang J, Xie S, Nong D, Zhang Z, Jing L, Xiong Y, Duan C, Liu J, Feng J. Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicumHP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression. Biotechnol Biofuels. 2016 Sep 23; 9: 203. Zvereva EA, Fedorova TV, Kevbrin VV, Zhilina TN, Rabinovich ML. Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026. Extremophiles. 2006 Feb; 10 (1): 53-60.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2022-08-10T14:20:50Zoai:bdtd.uftm.edu.br:tede/838Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2022-08-10T14:20:50Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false |
dc.title.none.fl_str_mv |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
title |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
spellingShingle |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico ALVES, Bianca Aguiar Bioprospecção. Bacillus. Lysinibacillus. Atividade enzimática. Glicosilhidrolases. Lipases. Bioprospecting. Bacillus. Lysinibacillus. Enzymatic activity. Glycosylhydrolases. Lipases. Protease. Industrial biotechnology. Ciências Biológicas |
title_short |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
title_full |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
title_fullStr |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
title_full_unstemmed |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
title_sort |
Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico |
author |
ALVES, Bianca Aguiar |
author_facet |
ALVES, Bianca Aguiar |
author_role |
author |
dc.contributor.none.fl_str_mv |
PAIVA, Aline Dias 05567401655 http://lattes.cnpq.br/6496294850014934 |
dc.contributor.author.fl_str_mv |
ALVES, Bianca Aguiar |
dc.subject.por.fl_str_mv |
Bioprospecção. Bacillus. Lysinibacillus. Atividade enzimática. Glicosilhidrolases. Lipases. Bioprospecting. Bacillus. Lysinibacillus. Enzymatic activity. Glycosylhydrolases. Lipases. Protease. Industrial biotechnology. Ciências Biológicas |
topic |
Bioprospecção. Bacillus. Lysinibacillus. Atividade enzimática. Glicosilhidrolases. Lipases. Bioprospecting. Bacillus. Lysinibacillus. Enzymatic activity. Glycosylhydrolases. Lipases. Protease. Industrial biotechnology. Ciências Biológicas |
description |
Os microrganismos apresentam grande diversidade metabólica, sendo capazes de produzir diferentes metabólitos de interesse biotecnológico. Dentre tais compostos, podemos destacar as enzimas, as quais possuem grande versatilidade de aplicação em diversos setores industriais, como farmacêutico, ambiental, bioenergia, têxtil, cosmético e alimentício. O solo representa um ambiente ideal para bioprospecção de microrganismos produtores de enzimas devido à grande biodiversidade microbiana naturalmente existente. Esse trabalho descreve o isolamento de bactérias produtoras de celulases, amilases, xilanases ou lipases, a partir de amostras de solo coletadas em regiões de mata preservada no bioma Cerrado, em Uberaba, MG. A atividade enzimática foi confirmada em85 das 376 bactérias isoladas em meios contendo quatro diferentes substratos, carboximetilcelulose, amido, xilano e tween 80. Baseado na quantificação enzimática, cinco linhagens foram selecionadas como melhores produtores de celulases (AB-9 (5,0 U/mL), AB-1 (4,630 U/mL), MB-3 (4,236 U/mL), MP-7 (4,282 U/mL) e ME-2 (4,444 U/mL)), cinco de amilases (AP-14 (2,506 U/mL), AE-2 (2,452 U/mL), MB-1 (1,417 U/mL), MB-18 (2,443 U/mL) e MB-22 (1,816 U/mL)), cinco de xilanases (AP-6 (5,093 U/mL), MP-9 (5,028 U/mL), ME-1 (2,870 U/mL), ME-16 (2,986 U/mL) e ME-20 (4,630 U/mL)) e cinco de lipases (AB-2 (10,064 U/mL), AB-3 (9,722 U/mL), AP-4 (2,934 U/mL), MB-7 (2,387 U/mL) e MB-4 (3,140 U/mL)). De acordo com o sequenciamento parcial do gene 16S RNAr, dos 20 isolados selecionados como melhores produtores de enzimas, 19pertencem ao gênero Bacillus e um pertence ao gênero Lysinibacillus. Além disso, 10 espécies distintas foram identificadas, compreendendo B. siamensis, B. toyonensis, B. methylotrophicus, B. pseudomycoides, B. thuringiensis, B. drentensis, B. subtilis, B. velezensis, L. macroides e B. wiedmannii. A caracterização parcial das enzimas resultou em grande diversidade. Celulases de B. methylotrophicus MP-7 e B. methylotrophicusMB-3 apresentaram máxima atividade em pH neutro (7 e 8), enquanto o extrato obtido a partir deB. toyonensis MB-1 mostrou alta atividade amilolítica em pH neutros a básicos (6-10). Oisolado celulolítico B. siamensisAB-9e o amilolítico B. methylotrophicusAP-14, bem como os isolados xilanolíticos e lipolíticos produziram enzimas com máxima atividade em todos os pHsavaliados (2-12). Em relação à temperatura, B. drentensis ME-2 apresentou alta atividade celulolítica a 60 °C, mesma temperatura ótima para amilases de B. methylotrophicus AP-14, B. subtilis AE-2, B. toyonensis MB-18 e B. pseudomycoides MB-22.B. toyonensis MB-1 apresentou máxima atividade amilolítica entre 40-70 °C; e os demais isolados apresentaram atividade enzimática máxima em todas as temperaturas avaliadas (10-80 °C). Apenas as xilanases produzidas por B. toyonensis MP-9 foram induzidas na presença de Fe2+, sendo as demais atividades enzimáticas não influenciadas pela presença de íons metais. O Cerrado é um bioma que abriga grande diversidade microbiana e esse estudo foi o primeiro passo para a exploração do potencial enzimático de bactérias de solo do Cerrado brasileiro. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-21 2019-08-27T17:50:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ALVES, Bianca Aguiar. Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico. 2018. 159f . Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2018 . http://bdtd.uftm.edu.br/handle/tede/838 |
identifier_str_mv |
ALVES, Bianca Aguiar. Bioprospecção de bactérias produtoras de enzimas de interesse biotecnológico. 2018. 159f . Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2018 . |
url |
http://bdtd.uftm.edu.br/handle/tede/838 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Acer Ö, Bekler FM, Pirinççioğlu H, Güven RG, Güven K. Purification and Characterization of Thermostable and Detergent-Stable α-Amylase from Anoxybacillus sp. AH1. Food Technol Biotechnol. 2016 Mar; 54 (1): 70–77. Acharya S, Chaudhary A. Bioprospecting Thermophiles for Cellulase Production: A Review. Braz J Microbiol. 2012 Jul-Sep; 43(3): 844–856. Ahmed I, Yokota A, Yamazoe A, Fujiwara T.Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1117-1125. Al-Abdalall AH, Al-Khaldi EM. Recovery of silver from used X-ray film using alkaline protease from Bacillus subtilis sub sp. Subtilis. Afr J Biotechnol. 2016 Jun 29; 15(26): 1413-1416. Almalki MA. Solid State Fermentation of Agro-Residues for the Production of Amylase from Bacillus subtilis for Industrial Applications. Int J Curr Microbiol App Sci. 2018; 7 (3): 1341-1348. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Out; 215 (3): 403-410. Alves PDD, Siqueira FF, Facchin S, Horta CCR, Victória JMN, Kalapothakis E. Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments. Open Microbiol J. 2014 Apr; 8: 25–31. Ammoneh H, Harba M, Akeed Y, Al-Halabi M, Bakri Y. Isolation and identification of local Bacillus isolates for xylanase biosynthesis. Iran J Microbiol. 2014 Apr; 6 (2): 127–132. Apun K, Jong BC, Salleh MA. Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J GenAppl Microbiol. 2000 Oct; 46(5): 263-267. Arifin AR, Kim SJ, Yim JH, Suwanto A, Kim HK. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic. J Microbiol Biotechnol. 2013 May; 23 (5): 661-667. Asha BM, Revathi M, Yadav A, Sakthivel N. Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol. 2012 Nov; 22 (11): 1501-1509. Awasthi MK, Wong JWC, Kumar S, Awasthi SK, Wang Q, Wang M, Ren X, Zhao J, Chen H, Zhang Z. Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. Bioresour Technol. 2018 Jan; 248 (Pt B): 160-170. Azadian F, Badoei-dalfard A, Namaki-Shoushtari A, Karami Z, Hassanshahian M. Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. J Genetic Eng Biotechnol. 2017 Jun; 15 (1): 187-196. Bajpai P. Application of Enzymes in the Pulp and Paper Industry. Biotechnol Prog. 1999 Mar; 15(2):147-57. Baker PJ, Numata K. Polymerization of Peptide Polymers for Biomaterial Applications. In: Yilmaz F. Polymer Science. InTech, 2013 Jan 23. Chap 9. Disponívelem: <http://www.intechopen.com/books/polymer-science/polymerization-of-peptide-polymers-for-biomaterial-applications>. Acessado em: 11 de Janeiro de 2017. Banerjee G, Scott-Craig JS, Walton JD. Improving Enzymes for Biomass Conversion: A Basic Research Perspective. BioEnerg Res. 2010 Mar; 3(1): 82-92. Bano S, Qader SAU, Aman A, Syed MN, Azhar A. Purification and Characterization of Novel α-Amylase from Bacillus subtilis KIBGE HAS. AAPS Pharm Sci Tech. 2011 Mar; 12 (1): 255–261. Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J. Application of Thermostable Xylanase of Bacillus pumilus in Textile Processing. Indian J Microbiol. 2012 Jun; 52(2): 222–229. Beattie AJ, Hay M, Magnusson B, de Nys R, Smeathers J, Vincent JFV. Ecology and bioprospecting. Austral Ecol. 2011 May 1; 36 (3): 341-356. Beloqui A, María PD, Golyshin PN, Ferrer M. Recent trends in industrial microbiology. CurrOpinMicrobiol. 2008 Jun; 11 (3):240-248. Bhalla A, Bischoff KM, Sani RK. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WsUcF1 utilizing lignocellulosic biomass. Front BioengBiotechnol. 2015 Jun 16; 3:84. Bhandari V, Ahmod NZ, Shah HN, Gupta RS.Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol. 2013 Jul;63(Pt 7):2712-2726. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000 Aug; 18 (5):355-383. Bhosale H, Shaheen U, Kadam T, Characterization of a Hyperthermostable Alkaline Lipase from Bacillus sonorensis 4R. Enzy Res. 2016; 2016:e4170684, 11 pages. Bibi Z, Ansari A, Zohra RR, Aman A, Qader SAU. Production of xylan degrading endo-1, 4-b-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radia Res Appl Sci. 2014 Oct; 7 (4): 478-485 Bisht SS, Panda AA. Biochemical Characterization and 16S rRNA Sequencing of Few Lipase-Producing Thermophilic Bacteria from Taptapani Hot Water Spring, Orissa, India. Biotechnol Res Int. 2011 Apr; 2011: 452710. Bocchini DA, Gomes E, Da Silva R. Xylanase production by Bacillus circulans D1 using maltose as carbon source. Appl Biochem Biotechnol. 2008 Mar; 146 (1-3): 29-37. Boucherba N, Gagaoua M, Bouanane-Darenfed A, Bouiche C, Bouacem K, Kerbous MY, Maafa Y, Benallaoua S. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. Bioresour Bioprocess. 2017 Jul; 4 (1): 29. Brackin R, Robinson N, Lakshmanan P, Schmidt S. Microbial function in adjacent subtropical forest and agricultural soil. Soil BiolBiochem. 2013 Feb; 57: 68-77. Brasil, MMA – Ministério do Meio Ambiente. 2018. Disponível em: <http://www.mma.gov.br/biodiversidade/convenção-da-diversidade-biológica>. Acessado em 12 de Maio de 2018. Brasil, MDIC - Ministério da Indústria, Comércio Exterior e Serviços. 2018. Disponível em: <http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior/comex-vis/frame-ppi?ppi=3161>. Acessado em 12 de Maio de 2018. Bravo D, Braissant O, Cailleau G, Verrecchia E, Junier P. Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch Microbiol. 2015 Jan; 197 (1):65-77. Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem. 2003 May 30; 38(10):1397–1403. Butt MS, Tahir-Nadem M, Ahmad Z, Sultan MT. Xylanases and Their Applications in Baking Industry. Food Tech Biotechnol. 2008 Jan; 46(1): 22-31. Chakdar H, Kumar M, Pandiyan K, Singh A, Nanjappan K, Kashyap PL, Srivastava AK. Bacterial xylanases: biology to biotechnology. 3 Biotech. 2016 Dec; 6(2): 150. Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G, Wang CF, Qian AD. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech. 2018 Feb; 8 (2): 114. Cheng J, Huang S, Jiang H, Zhang Y, Li L, Wang J, Fan C. Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World J Microbiol Biotechnol. 2016 Jan; 32 (1): 12. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsisfibuligera and its applications in biotechnology. Biotechnol Adv. 2009 Jul-Aug; 27(4):423-431. Chikerema SM, Pfukenyi DM, Hang'ombe BM, L'Abee-Lund TM, Matope G. Isolation of Bacillus anthracis from soil in selected high-risk areas of Zimbabwe. J Appl Microbiol. 2012 Dec; 113 (6) :1389-1395. Cho SJ, Kim MH, Lee YO. Effect of pH on soil bacterial diversity. J Ecol Environ. 2016 Dec; 40: 10. Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Dueramae S. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology. Biotechnol Rep. 2016 Jun; 10: 17–28. Cordeiro CAM, Martins MLL, Luciano AB; da Silva RF. Production and properties of Xylanase from thermophilic Bacillus sp. Braz Arch Biol Technol. 2002 Dec; 45(4): 413-418. Couto SR, Sanromán MA. Application of solid-state fermentation to food industry - A review. J Food Eng. 2006 Oct; 76(3): 291-302. Cuesta SM, Rahman SA, Furnham N, Thornton JM. The Classification and Evolution ofEnzyme Function. Biophy J. 2015 Sep;109: 1082–1086. Cui H,Yang M, Wang L, Xian CJ. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease. PLoS ONE. 2015 Dec; 10(12): e0146067. Dalvi P, Anthappan P, Darade N, Kanoongo N, Adivarekar R. Amylase and pectinase from single source for simultaneous desizing and scouring. Indian J Fibre Text Res. 2007 Dec; 32(4): 459-465. Dash BK, Rahman MM, Sarker PK. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. Biomed Res Int. 2015 Jun; 2015: 859805. David S, Femi B, Gbenga A, Saanu AB. Purification and Characterization of α-Amylase from Bacillus subtilis Isolated from Cassava Processing Sites. J Bioremediat Biodegrad 2017 Oct; 8 (6):1-7. Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SMA. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springer Plus. 2013 Dec; 2 (1): 154. de Azeredo LAI, Freire DMG, Soares RMA, Leite SGF, Coelho RRR. Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzy Microbial Technol. 2004 Mar; 34 (3): 354–358. Devaraj K, Aathika S, Periyasamy K, Periyaraman PM, Palaniyandi S, Subramanian S. Production of thermostable multiple enzymes from Bacillus amyloliquefaciens KUB29. Nat Prod Res. 2018 Jan: 1-4. https://doi.org/10.1080/14786419.2018.1425857 Dienes D, Egyházi A, Réczey K. Treatment of recycled fiber with Trichoderma cellulases. IndCrops Prod. 2004 Jul; 20(1): 11-21. Dionisi HM, Lozada M, Olivera NL. Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argent Microbiol. 2012 Jan-Mar; 44 (1): 49-60. Divakaran D, Chandran A, Chandran RP. Comparative study on production of a-Amylase from Bacillus licheniformis strains. Braz J Microbiol. 2011 Dec; 42 (4): 1397–1404. dos Santos ER, Teles ZNS, Campos NM, de Souza DAJ, Bispo ASR, Nascimento RP. Production of α-Amylase from Streptomyces sp. SLBA-08 Strain Using Agro-Industrial By-Products. Brazilian Arch Biol Technol. 2012 Sep; 55 (5): 793-800. Dutta P, Deb A, Majumdar S. Optimization of the Medium for the Production of Extracellular Amylase by the Pseudomonas stutzeri ISL B5 Isolated from Municipal Solid Waste. Int J Microbiol. 2016 Dec; 2016: 4950743. Du R, Yan J, Li S, Zhang L, Zhang S, Li J, Zhao G, Qi P. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonastaiwanensis. Biotechnol Biofuel. 2015; 8: 10. Ellaiah P, Srinivasulu B, Kunamneni A. A review on microbial alkaline proteases. J Sci Ind Res. 2002 Sep; 61(9): 690-704. Endo K, Hakamada Y, Takizawa S, Kubota H, Sumitomo N, Kobayashi T, Ito S. A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol. 2001 Oct; 57 (1-2): 109-16. Farrokh P, Yakhchali B, Karkhane AA. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12. Braz J Microbiol. 2014; 45 (2): 677–687. Fossi BT, Tavea F, Fontem LA, Ndjouenkeu R, Wanjia S. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnol Rep. 2014 Dec; 4: 99–106. Fotouh DMA, Bayoumi RA, Hassan MA. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry. Enzyme Res. 2016 Jan; 2016: 9034364. Fuwa H. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J Biochem. 1954 Sep; 41(5): 583-603. Gallegos-Monterrosa R, Maróti G, Bálint B, Kovács AT. Draft Genome Sequence of the Soil Isolate Lysinibacillus fusiformis M5, a Potential Hypoxanthine Producer. Genome Announc. 2016 Nov; 4 (6): e01272-16. Gaur R, Tiwari S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 2015 Mar 19; 15:b19. Ghio S, Insani EM, Piccinni FE, Talia PM, Grasso DH, Campos E. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Microbiol Res. 2016 Mar; 186: 16–26. Ghori MI, Iqbal MJ, Hameed A. Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Braz J Microbiol. 2011 Mar; 42 (1): 22–29. Global Market Insights. Nome Enzymes Market Size By Product (Proteases, Lipases, Carbohydrases, Polymerases & Nucleases), By Application (Detergents, Food & beverages, Animal Feed, Biofuels), Industry Analysis Report, Regional Outlook (U.S., Canada, Germany, UK, France, Italy, Sweden, Austria, Poland, Russia, China, India, Japan, Indonesia, Thailand, Malaysia, Australia, Brazil, Argentina, Mexico, South Africa, UAE, Saudi Arabia, Kuwait, Egypt), Growth Potential, Price Trends, Competitive Market Share & Forecast, 2016 – 2024. 2016. Disponível em: <https://www.gminsights.com/industry-analysis/enzymes-market>. Acessado em 6 de Janeiro de 2017. Goldbeck R, Filho FM. Screening, Characterization, and Biocatalytic Capacity of Lipases Producing Wild Yeasts from Brazil Biomes. Food Sci Biotechnol. 2013 Feb; 22 (1): 79-87. Gopinath SCB, Anbu P, Arshad MKM, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. Biotechnological Processes in Microbial Amylase Production. BioMed ResInter. 2017 Feb; 2017: 9 pages, ID 1272193. Goyal V, Mittal A, Bhuwal AK, Singh G, Yadav A, Aggarwal NK. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions. Biotechnol Res Int. 2014 Apr; 2014: 651839. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. ProcessBiochem. 2003 Jun 30; 38(11): 1599-1616. Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purificationand biochemical properties. Appl MicrobiolBiotechnol. 2004 Jun; 64(6): 763-781. Gurung N, Ray S, Bose S, Rai V.A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. Biomed Res Int. 2013; 2013: 18 pages. Hankin R, Anagnostakis SL. The use of solid media for detection of enzymes production by fungi. Mycol. 1975; 67 (3): 596-607. Harris AD, Ramalingam C. Xylanases and its Application in Food Industry: A Review. J Exp Sci. 2010; 1(7): 1-11. Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzy Microbiol Tech. 2006 Jun 26; 39(2): 235–251. Hirano K, Kurosaki M, Nihei S, Hasegawa H, Shinoda S, Haruki M, Hirano N. Enzymatic diversity of the Clostridium thermocellumcellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci Rep. 2016 Oct 19; 6: 35709. Hmidet N, Ali NE-H, Haddar A, Kanoun S, Alya S-K, Nasri M. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. BiochemEng J. 2009 Dec 1; 47(1-3): 71-79. Huang S, Deng G, Yang Y, Wu Z, Wu L. Optimization of Endoglucanase Production from a Novel Bacterial Isolate, Arthrobacter sp. HPG166 and Characterization of Its Properties. Braz Arch Biol Technol. 2015 Oct; 58 (5): 692-701. Huse SM, Desthlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable TagSequencing. PLoS Genet. 2008 Nov; 4 (11): e1000255. Hyun HH, Zeikus JG. General Biochemical Characterization of Thermostable Extracellular beta-Amylase from Clostridium thermosulfurogenes. Appl Environ Microbiol. 1985 May; 49(5): 1162-1167. Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring. Appl Biochem Biotechnol. 2017 Aug; 182 (4): 1390–1402. Ismaya WT, Hasan K, Subroto T, Natalia D, Soemitro S. Chromatography as the Major Tool in the Identification and the Structure-Function Relationship Study of Amylolytic Enzymes from SaccharomycopsisFibuligera R64. In: Calderon L. Chromatography - The Most Versatile Method of Chemical Analysis. Intech. 2012 Oct 24. Chap 11. Disponívelem: <http://www.intechopen.com/books/chromatography-the-most-versatile-method-of-chemical-analysis/chromatography-as-the-major-tool-in-the-identification-and-the-structure-function-relationship-study>. Acessado em 12 de Janeiro de 2017. Jaeger KE, Reetz MT. Microbial lipases formversatile tools for biotechnology. Trends Biotechnol. 1998 Sep; 16(9): 396-403. Jiewei T, Zuchao L, Peng Q, Lei W, Yongqiang T. Purification and Characterization of a Cold-Adapted Lipase from Oceanobacillus Strain PT-11. Plos One. 2014 Jul; 9(7): e101343. Jisha VN, Smitha RB, Pradep S, Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S. Versatility of microbial proteases. Adv Enzy Res. 2013 Sep; 1(3): 39-51. Joseph B, Ramteke PW. Extracellular solvent stable cold-active lipase from psychrotrophic Bacillus sphaericus MTCC 7526: partial purification and characterization. Ann Microbiol. 2013 Feb; 63: 363–370. Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol Adv. 2008 Sep-Oct; 26(5): 457-470. Jung J, Philippot L, Park W. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Sci Rep. 2016 Mar; 6: 23012. Jung MY, Kim JS, Paek WK, Styrak I, Park IS, Sin Y, Paek J, Park KA, Kim H, Kim HL, Chang YH.Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus.Int J Syst Evol Microbiol. 2012 Oct;62(Pt 10):2347-2355. Kamble RD, Jadhav AR. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation. Inter J Microbiol. 2012; 2012: e683193, 8 pages. Kanmani P, Kumaresan K, Aravind J. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase. Braz J Microbiol. 2015 Oct-Dec; 46 (4): 1235-1243. Karigar CS, Rao SS. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzy Res. 2011; 2011: 11pages. Kaseke ZM, Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation. Sustain. 2016; 8 (1168):10.3390. Khandeparker R, Parab P, Amberkar U. Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues. Food Technol Biotechnol. 2017 Jun; 55 (2): 164–172. Kim Y-K, Lee S-C, Cho Y-Y, Oh Y-J, Ko YH. Isolation of Cellulolytic Bacillus subtilis Strains from Agricultural Environments. ISRN Microbiol. 2012 Feb; 2012: 650563. Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. CurrOpinBiotechnol. 2002 Aug; 13(4): 345-351. Knob A, Terrasan CRF, Carmona EC. β-Xylosidases from filamentous fungi: an overview. W J MicrobiolBiotechnol. 2010 Mar; 26(3): 389-407. Koc M, Cokmus C, Cihan AC. The genotypic diversity and lipase production of some thermophilic bacilli from different genera. Braz J Microbiol. 2015 Dec; 46 (4): 1065–1076. Kong D, Wang Y, Zhao B, Li Y, Song J, Zhai Y, Zhang C, Wang H, Chen X, Zhao B, Ruan Z. Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol. 2014 Aug; 64 (8): 2593-2598. Kubicek CP. Systems biological approaches towards understanding cellulose production by Trichoderma reesei. J Biotechnol. 2013 Jan 20; 163(2): 133–142. Kumar L, Kumar D, Nagar S, Gupta R, Garg N, Kuhad RC, Gupta VK. Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech. 2014 Aug; 4 (4): 345–356. Kumar PS, Yaashikaa PR, Saravanan A. Isolation, characterization and purification of xylanase producing bacteria from sea sediment. Biocat Agri Biotechnol. 2018 Jan; 13 (2018): 299-303. Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J IndMicrobiol Biotechnol. 2008 May; 35(5): 377-391. Kumar S, Haq I, Prakash J, Singh SK, Mishra S, Raj A. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech. 2017 May; 7 (1): 20. Kumar S, Khare SK. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzy Res. 2015; 2015: e859485, 9 pages. Latorre JD, Velasco XH, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, Bielke LR, Hargis BM,Tellez G. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Front Vet Sci. 2016 Oct; 3: 95. Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009 Aug; 75(15): 5111-5120. Li S, Yang X, Yang S, Zhu M, Wang X. Technology Prospecting on Enzymes: Application, Marketing and Engineering. Comput Struct Biotechnol J. 2012; 2(3): e201209017. Lian J, Choi J, Tan YS, Howe A, Wen Z, Jarboe LR. Identification of Soil Microbes Capable of Utilizing Cellobiosan. PLoS One. 2016 Feb; 11 (2): e0149336. Liang Y-L, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1. Biomed Res Int. 2014 Jun; 2014: 512497. Lisov AV, Belova OV, Lisova ZA, et al. Xylanases of Cellulomonasflavigena: expression, biochemical characterization, and biotechnological potential. AMB Express. 2017; 7: 5. Liu W, Li M, Yan Y. Heterologous expression and characterization of a new lipase from Pseudomonas fluorescens Pf0–1 and used for biodiesel production. Sci Rep. 2017 Nov; 7: 15711. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016 Apr; 6: 25279. LPSN – List of Prokaryotic names with Standing in Nomenclature. Bacillus. <http://www.bacterio.net/bacillus.html> Acessado em 29 de Junho de 2018. LPSN – List of Prokaryotic names with Standing in Nomenclature. Lysinibacillus.<http://www.bacterio.net/lysinibacillus.html> Acessado em 29 de Junho de 2018. Lu M, Wang S, Fang Y, Li H, Liu S, Liu H. Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. Protein J. 2010 Nov; 29 (8): 591-597. Madar D, Dekel E, Bren A, Zimmer A, Porat Z, Alon U. Promoter activity dynamics in the lag phase of Escherichia coli. BMC Syst Biol. 2013 Dec; 7:136. Maki M, Leung KT, Qin W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J BiolSci. 2009 Jul 29; 5(5): 500–516. Martínez-Rosales C, Castro-Sowinski S. Antarctic bacterial isolates that produce cold-active extracelular proteases at low temperature but are active and stable at high temperature. Polar Res. 2011 Apr 22; 30: 7123. Maurer K-H. Detergent proteases. CurrOpinBiotechnol. 2004 Aug; 15(4): 330-334. Mechri S, Kriaa M, Berrouina MBE, Benmrad MO, Jaouadi NZ, Rekik H, Bouacem K, Darenfed AB, Chebbi A, Sayadi S, Chamkha M, Bejar S, Jaouadi B. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol. 2017 Aug; 101: 383-397. Meidong R, Doolgindachbaporn S, Jamjan W, Sakai K, Tashiro Y, Okugawa Y, Tongpim S. A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (Phak-dong) for potential use as a feed supplement in aquaculture. J Gen Appl Microbiol. 2017 Sep 5; 63 (4): 246-253. Meilleur C, Hupé JF, Juteau P, Shareck F. Isolation and characterization of a new alkali-thermostable lipase cloned from a metagenomic library. J Ind Microbiol Biotechnol. 2009 Jun; 36 (6): 853-861. Meng F, Ma L, Ji S, Yang W, Cao B. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett Appl Microbiol. 2014 Sep; 59 (3): 306-312. Metzger JO, Bornscheuer U. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl MicrobiolBiotechnol. 2006 Jun; 71(1): 13-22. Miller GL. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. 1959 Mar; 31(3): 426–428. Mobarak-Qamsari E, Kasra-Kermanshahi R, Moosavi-nejad Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran J Microbiol. 2011 Jun; 3(2): 92–98. Murugan S, Arnold D, Pongiya UD, Narayanan PM. Production of Xylanase from Arthrobacter sp. MTCC 6915 Using Saw Dust As Substrate under Solid State Fermentation. Enzy Res. 2011 Aug; 2011: 696942. Nascimento RP, Coelho RRR, Marques S, Alves L, Gírio FM, Bon EPS, Amaral-Collaço MT. Production and partial characterization of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzy Microbiol Tech. 2002 Sep; 31 (4): 549–555. Nascimento RP, d'Avila-Levy CM, Souza RF, Branquinha MH, Bon EP, Pereira N Jr, Coelho RR. Production and partial characterization of extracellular proteinases from Streptomyces malaysiensis, isolated from a Brazilian cerrado soil. Arch Microbiol. 2005 Nov; 184 (3): 194-8. Nagar S, Mittal A, Gupta VK. A Cost Effective Method for Screening and Isolation of Xylan Degrading Bacteria Using Agro Waste Material. Asi J Bio Sci. 2012 Aug; 5(8): 384-394. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. Eur J Soil Sci. 2003 Dec; 54(4): 655-670. Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Housni SKA, Mabood F, Khan AL, Farooq S, Abbas G, Harrasi AA. Exploring the Potentials of Lysinibacillus sphaericus ZA9 for Plant Growth Promotion and Biocontrol Activities against Phytopathogenic Fungi.Front Microbiol. 2017 Aug; 8: 1477. NCBI-National Center of Biotechnology Information, Taxonomy Browser <https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1386&lvl=3&lin=f&keep=1&srchmode=1&unlock> Acessado em 29 de Junho de 2018. Niu Q, Zhang G, Zhang L, Ma Y, Shi Q, Fu W. Purification and characterization of a thermophilic 1,3-1,4-β-glucanase from Bacillus methylotrophicus S2 isolated from booklice. J Biosci Bioeng. 2016 May; 121 (5): 503-508. Noormohamadi R, Tabandeh F, Shariati P, Otadi M. Characterization of a lipase from a newly isolated Pseudomonas sp. Iran J Microbiol. 2013 Dec; 5 (4): 422–427. Oh H, Seo DJ, Jeon SB, Park H, Jeong S, Chun HS, Oh M, Choi C. Isolation and Characterization of Bacillus cereus Bacteriophages from Foods and Soil. Food Environ Virol. 2017 Sep; 9 (3): 260-269. Oliveira SD, Santos LR, Schuch DMT, Silva AB, Salle CTP, Canal CW. Detection and identification of salmonellas from poultry-related samples by PCR. Vet Microbiol. 2002; 87: 25-35. Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. BioTech. 2000 Aug; 74(1): 69-80. Patil KJ, Chopda MZ, Mahajan RT. Lipase biodiversity. Indian J Sci Technol. 2011 Aug; 4(8): 971-982. Paudel YP, Qin W. Characterization of Novel Cellulase-producing Bacteria Isolated From Rotting Wood Samples. Appl Biochem Biotechnol. 2015 Nov; 177 (5): 1186-98. Peixoto-Nogueira S de C, Michelin M, Betini JHA, Jorge JA, Terenzi HF, Polizeli MLTM. Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J IndMicrobiolBiotechnol. 2009 Jan; 36(1): 149-155. Peng Q, Wang X, Shang M, Huang J, Guan G, Li Y, Shi B. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb Cell Fact. 2014 Jan 4; 13: 1. Pinjari AB, Kotari V. Characterization of extracellular amylase from Bacillus sp. Strain RU1. J Appl Biol Biotechnol. 2018 May; 6 (3): 29-34. Privé F, Newbold CJ, Kaderbhai NN, Girdwood SG, Golyshina OV, Golyshin PN, Scollan ND, Huws SA. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl Microbiol Biotechnol. 2015 Jan; 99 (13): 5475–5485. Pohlon E, Fandino AO, Marxsen J. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting. PLoS One. 2013 Dec; 8 (12): e83365. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl MicrobiolBiotechnol. 2005 Jun; 67(5): 577-591. Potprommanee L, Wang X-Q, Han Y-J, Nyobe D, Peng YP, Huang Q, Liu J, Liao YL, Chang K-L. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One. 2017 Apr; 12 (4): e0175004. Prad |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Instituto de Ciências da Saúde - ICS::Curso de Medicina Brasil UFTM Programa de Pós-Graduação em Ciências Fisiológicas |
publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Instituto de Ciências da Saúde - ICS::Curso de Medicina Brasil UFTM Programa de Pós-Graduação em Ciências Fisiológicas |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFTM instname:Universidade Federal do Triangulo Mineiro (UFTM) instacron:UFTM |
instname_str |
Universidade Federal do Triangulo Mineiro (UFTM) |
instacron_str |
UFTM |
institution |
UFTM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
collection |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM) |
repository.mail.fl_str_mv |
bdtd@uftm.edu.br||bdtd@uftm.edu.br |
_version_ |
1813013334490873856 |