Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_3ff8f8ca8c8501d5d55425abf39eb5dd
oai_identifier_str oai:bdtd.uftm.edu.br:tede/865
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Diferenciação in vitro de células-tronco mesenquimais de ratos wistar em células neuron-like catecolaminérgicasCélulas-tronco mesenquimais.Diferenciação neuronal.Doença de Parkinson.Terapia celular.Doenças neurodegenerativas.Mesenchymal stem cells.Neuronal differentiation.Parkinson's disease.Cell therapy.Neurodegenerative diseases.FisiologiaCélulas-tronco mesenquimais (MSCs) são células-tronco adultas encontradas em diferentes tecidos e capazes de secretar moléculas bioativas, migrar para locais de injúria tecidual e se diferenciar em células de diversas linhagens. Tais características embasaram anos de pesquisa empregando MSCs em modelos experimentais de doença de Parkinson, uma doença neurodegenerativa caracterizada pela perda de neurônios dopaminérgicos da via nigro-estriatal (entre a substância negra, parte compacta e o corpo estriado). Inúmeros trabalhos demonstraram o efeito neurorregenerador das MSCs sobre essas vias dopaminérgicas perdidas, levando à melhoria nos sintomas. Apesar de todo esse potencial terapêutico, há de se encontrar meios de tornar essas células mais eficientes para um tratamento curativo da doença. Nesse intuito, um passo importante é buscar um protocolo para aumentar a eficiência terapêutica de MSCs de rato por meio de diferenciação prévia, uma vez que esse animal é um dos principais modelos de experimentação e estudo da doença de Parkinson. Por isso, o presente trabalho testou um protocolo de diferenciação prévia de MSCs em células neuron-like dopaminérgicas usando CoCl2 – que ativa o fator transcricional induzido por hipóxia -1 (HIF-1) - e Y-27632, o qual inibe a enzima Rho quinase (ROCK). Para tanto, foram utilizadas células-tronco mesenquimais de medula óssea (bmMSCs) de ratos Wistar cultivadas até entre a quarta passagem e a sétima passagem.As bmMSCs foram separadas em três grupos: G1, no qual elas foram mantidas em meio de cultura; G2, onde elas foram tratadas com CoCl2 por 72 horas; e G3, no qual as bmMSCs foram incubadas com CoCl2 e Y-27632 pelo mesmo tempo. Ao longo de três dias (72 horas) as células foram analisadas à microscopia de contraste de fase. Em seguida, as células foram submetidas à marcação por imunofluorescência para a enzima tirosina hidroxilase (TH) e para a proteína 2 associada à microtúbulo (MAP-2). Algumas células foram separadas para ensaio com ácido glioxílico a fim de detectar catecolamina intracitoplasmática. Na análise microscópica depois de 72 horas, as células do G1 se apresentaram inalteradas, G2 apresentaram aspecto de neuroblastos e as do G3 características neuron-like, com várias ramificações partindo do corpo celular. Na imunofluorescência, as células do G1 não apresentaram marcação, G2 expressou positividade para MAP-2 e G3 para TH e MAP-2. O ensaio com ácido glioxílico revelou que as células do G3 possuíam catecolamina em seu citoplasma. Os resultados indicam que bmMSCs de ratos também são suscetíveis a diferenciação in vitro em células neuron-like catecolaminérgicas após tratadas com CoCl2 e Y-27632. Portanto, considerando esses resultados juntamente com o que é descrito pela literatura é provável que a catecolamina presente no citoplasma das células neuron – like diferenciadas seja a dopamina.Mesenchymal stem cells (MSCs) are adult stem cells found in different tissues and capable of secreting bioactive molecules, migrate to sites of tissue injury and differentiate into cells of different lineages. These characteristics supported years of research using MSCs in experimental models of Parkinson's disease, a neurodegenerative disease characterized by the loss of dopaminergic neurons from the nigro striatal pathway (between the substantia nigra pars compacta and in the striatum). Numerous studies have demonstrated the neurorregenerating effect of MSCs on these lost dopaminergic pathways, leading to improvement in symptoms. Despite all this therapeutic potential, is necessary to find ways of making these cells more efficient for a curative treatment of the disease. To this end, an important step is to seek a protocol to increase the therapeutic efficiency of rat’s MSCs by prior differentiation, since this animal is one of the best models of experimentation and study of Parkinson's disease. Therefore, the present work tested a protocol of prior differentiation of MSCs in dopaminergic neuron-like cells using CoCl2 – which activates the transcriptional factor hypoxia-inducible factor-1 (HIF-1) - and Y-27632, which inhibits the Rho kinase (ROCK) enzyme. For this purpose, we used bone marrow mesenchymal stem cells (bmMSCs) obtained from Wistar rats between the fourth and seventh passage.The bmMSCs were separated into three groups: G1, in which they were maintained in culture medium; G2, where they were treated with CoCl2 for 72 hours; and G3, in which the MSCs were incubated with CoCl2 and Y-27632 for 72 hours as well. Over the course of three days (72 hours) the cells were analyzed by light field microscopy. Then, these cells were labeled with immunocytofluorescence for the enzyme tyrosine hydroxylase (TH) and microtubule-associated protein 2 (MAP-2). Some cells were separated for assay with glyoxylic acid in order to detect intracytoplasmic cathecolamines. On the microscopic analyses after 72 hours, the G1 cells were unchanged; G2 presented neuroblast appearance and the G3 neuron-like characteristics, with several branches from the cell body. In immunocytofluorescence, G1 cells showed no labeling, G2 expressed positivity for MAP-2 and G3 for TH and MAP-2. The glyoxylic acid assay revealed that G3 cells had cathecolamines in their cytoplasm. The results indicate that rat bmMSCs are also susceptible to in vitro differentiation in neuron-like cells after treated with CoCl2 and Y-27632. In adition, considering these results together with what is described in the literature it is likely that the catecholamine present in the cytoplasm of neuron - like cells is dopamine.Fundação de Amparo à Pesquisa do Estado de Minas GeraisUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de MedicinaBrasilUFTMPrograma de Pós-Graduação em Ciências FisiológicasSILVA, Valdo José Dias da64003051653http://lattes.cnpq.br/4763314549493316OLIVEIRA, Lucas Felipe07127903654http://lattes.cnpq.br/7569159562428405MENDES FILHO, Daniel2019-09-18T16:30:05Z2017-10-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfMENDES FILHO, Daniel. Diferenciação in vitro de células-tronco mesenquimais de ratos wistar em células neuron-like catecolaminérgicas. 2017. 52f . Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2017 .http://bdtd.uftm.edu.br/handle/tede/865porALIAGHAEI, A. et al. Dopaminergic induction of umbilical cord mesenchymal stem cells by conditioned medium of choroid plexus epithelial cells reduces apomorphine-induced rotation in parkinsonian rats. Arch Iran Med., Tehran, v. 19, n. 8, p. 561-70, Aug. 2016. doi: 0161908/AIM.008. ANUSHA, C.; SUMATHI, T.; JOSEPH, L.D. Protective role of apigenin on rotenone induced rat model of parkinson's disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact. ,2017 May 1; 269:67-79. doi: 10.1016/j.cbi.2017.03.016. Epub 2017 Apr 4. AIZMAN, I. et al. Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res, New York, v.87, n.14, p. 3198-3206, Nov 2009. AXELSSON, S. et al.Glyoxylic acid condensation: a new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol Scand. 1973 Jan; 87(1):57-62. AZEDI, F. et al. Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep. 2017 Feb; 44(1):169-182. doi: 10.1007/s11033-016-4095-7. Epub 2016 Dec 15. BAHAT-STROOMZA, M. et al.Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease. J Mol Neurosci. 2009 Sep; 39(1-2):199-210. doi: 10.1007/s12031-008-9166-3. Epub 2009 Jan 6 BARRY, F.P.; MURPHY, J.M.. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584. 2004 BEHR, B. et al. Stem cells. Plast Reconstr Surg. 2010 Oct; 126(4):1163-71. doi: 10.1097/PRS.0b013e3181ea42bb. BLANDINI, F. et al. Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant, Elmsford, v.19, n.2, p.203-217, 2010. BJÖRKLUND, A.; LINDVALL, O. Cell replacement therapies for central nervous system disorders. Nat Neurosci. 2000 Jun;3(6):537-44. BORKOWSKA, P. et al. Differentiation of adult rat mesenchymal stem cells to GABAergic, dopaminergic and cholinergic neurons. Pharmacol Rep. 2015 Apr;67(2):179-86. doi: 10.1016/j.pharep.2014.08.022. Epub 2014 Sep 9. CAPLAN, A.L. Mesenchymal stem cells. J Orthop Res, New York, v.9, n.5, p.641-650, Sep 1991. CAPLAN, A.L.; CORREA, D. The MSC: an injury drugstore. Cell Stem Cell, Cambridge, v.9, n.1, p.11-15, Jul 2011. CAPITELLI, C. S. et al. Opposite effects of bone marrow-derived cells transplantation in MPTP-rat model of Parkinson’s disease: a comparison study of mononuclear and mesenchymal stem cells. Int J Med Sci, London, v.11, n.10, p.1049-1064, Ago 2014. CHEN, J.; CHOPP, M. Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx. 2006 Oct;3(4):466-73. CHUDICKOVA , M. et al. Targeted neural differentiation of murine mesenchymal stem cells by a protocol simulating the inflammatory site of neural injury. J Tissue Eng Regen Med. 2017 May; 11(5):1588-1597. doi: 10.1002/term.2059. Epub 2015 Jun 29. CUI, Y. et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res. 2017 Mar 1;320:291-301. doi: 10.1016/j.bbr.2016.12.021. Epub 2016 Dec 19. DA SILVA MEIRELLES, L.;CHAGASTELLES, P.C.; NARDI, N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. (2006) 119 (Part 11): 2204 -2213. DANIELYAN, L. et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res, Larchmont, v.14, n.1, p.3-16, Feb 2011. DAUER, W.; PRZEDBORSKI, S. Parkinson’s disease: mechanisms and models. Neuron, New York, v.39, p.889-909, Sep. 2003. DENG, J. et al. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol Sci, Milano, v.32, n.4, p. 641-651, Aug 2011. DEY, N.D. et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res. 2010 Dec 25; 214(2):193-200. doi: 10.1016/j.bbr.2010.05.023. Epub 2010 May 21. DÍEZ-TEJEDOR, E. et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis. 2014 Nov-Dec; 23(10):2694-700. DI NICOLA, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002 May 15;99(10):3838-43. DOMINICI, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy. 2006; 8(4):315-7. DOSS, M.X. et al. Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med, Oxford, v.8, n.4, p. 465-473, Nov 2004. FINK, K.D. et al. Developing stem cell therapies for juvenile and adult-onset Huntington's disease. Regen Med. 2015;10(5):623-46. doi: 10.2217/rme.15.25. FOX, L.E. et al. Membrane properties of neuron-like cells generated from adult human bone-marrow-derived mesenchymal stem cells. Stem Cells Dev, Larchmont, v.19, n.12, p. 1831-1841, Dec 2010. FU, Y.S. et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for parkinsonism. Stem Cells, 24, p.115–124, 2006,. FUKUCHI, Y.et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells (2004) 22 (5): 649 -658. FRIEDENSTEIN, A.J.;PIATETZKY-SHAPIRO, I.I.; PETRAKOVA, K.V. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966 Dec; 16(3):381-90. FRIEDENSTEIN, A.J.; CHAILAKHJAN, R.K.; LALYKINA, K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970 Oct; 3(4):393-403. GAO, Y.J. et al. Differentiation potential of bone marrow stromal cells to enteric neurons in vitro. Chin J Dig Dis, Carlton South, v.07, n.03, p.156-163, 2006. GLAVASKI-JOKSIMOVIC, A.; BOHN, M.C. Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol, New York, v.247, n.1, p.25-38, Sep 2013. HASS, R. et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal, London, v.9, n.1, p.12, May 2011. HEGARTY, S.V. et al. Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2017 May;38:19-25. doi: 10.1016/j.parkreldis.2017.02.011. Epub 2017 Feb 10. HERZOG, W.; WEBER, K. Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerization in vitro. Eur J Biochem. 1978 Dec 1;92(1):1-8. HORNYKIEWICZ, O. Parkinson's disease: from brain homogenate to treatment. Fed Proc, Washington, v.32, n.2, p.183-190, Feb. 1973. HU, B. et al. Effect of extracellular vesicles on neural functional recovery and immunologic suppression after rat cerebral apoplexy. Cell Physiol Biochem. 2016; 40(1-2):155-162. Epub 2016 Nov 18. HU, C.; LI, L. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell, Berlim, v.6, n.8, p.562-574, Aug 2015. JEON, E.S. et al. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124ª. Biochem Biophys Res Commun, New York, v.444, p. 581-587, Jan 2014. JEONG, S.G.; CHO, G.W. The tubulin deacetylase sirtuin-2 regulates neuronal differentiation through the ERK/CREB signaling pathway. Biochem Biophys Res Commun. 2017 Jan 1;482(1):182-187. doi: 10.1016/j.bbrc.2016.11.031. Epub 2016 Nov 9 JI, J.F. et al. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, Basel, v.22, n.3, p.415-427, 2004. JIANG, Y. et al Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, London, v.418, n.01, p.41-49, 2002. JIN, G.Z.et al. Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int. 2008 Nov; 32(11):1433-8. doi: 10.1016/j.cellbi.2008.08.014. Epub 2008 Aug 20. JINFENG, L. et al. Therapeutic effects of CUR-activated human umbilical cord mesenchymal stem cells on 1-methyl-4-phenylpyridine-induced parkinson's disease cell model. Biomed Res Int., 2016; 2016: 9140541. Published online 2016 May 31. doi: 10.1155/2016/9140541 KAJIYAMA, H. et al. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol. 2010;54(4):699-705. doi: 10.1387/ijdb.092953hk. KANG, S.K. et al. Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int, London, v.2012, ID: 342968, Apr 2012. KARP, J.M.; LENG-TEO, G.S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, Cambridge, v.4, n.3, p.206-216, Mar 2009. KERKIS ,I. et al. Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges. Stem Cell Res Ther. 2015 Dec 14; 6:232. doi: 10.1186/s13287-015-0248-1. KHANABDALI, R. et al. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Drug Des Devel Ther., 2015 Dec 24;10:81-91. doi: 10.2147/DDDT.S89658. eCollection 2016 KIM, M. et al. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem Biophys Res Commun. 2006 Sep 22;348(2):386-92. Epub 2006 Jul 24. KIM, S. et al. Neural differentiation potential of peripheral blood- and bonemarrow-derived precursor cells. Brain Res. 2006 December 6; 1123(1): 27–33. doi:10.1016/j.brainres.2006.09.044. KIM, S.S. et al. Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells , 2008 Jul 10 KIM, Y.J. et al. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia. 2009 Jan 1; 57(1):13-23. doi: 10.1002/glia.20731. KOBOLAK, J. et al. Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016 Apr 15;99:62-8. doi: 10.1016/j.ymeth.2015.09.016. Epub 2015 Sep 15. KÖNIG, R. Consecutive demonstration of catecholamines and dopamine-β-hydroxylase within the same specimen. Histochemistry , January 1979, Volume 61, Issue 3, pp 301–305 KURAMOTO, L. et al. The nature of progression in Parkinson's disease: an application of non-linear, multivariate, longitudinal random effects modelling. PLoS One. 2013 Oct 18;8(10):e76595. doi: 10.1371/journal.pone.0076595. eCollection 2013 LATTANZI, W. et al. Neurotrophic Features of Human Adipose Tissue-Derived Stromal Cells: In Vitro and In Vivo Studies. J Biomed Biotechnol.,Volume 2011 (2011). http://dx.doi.org/10.1155/2011/468705 LEVY, Y.S. et al. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease. Cytotherapy. 2008; 10(4):340-52. doi: 10.1080/14653240802021330. LINDVALL, O.; KOKAIA, Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Farmacol Sci, London, v.30, n.5, p.260-267, May 2009. LOCATELLI, F. et al. Stem cell therapy in stroke. Cell Mol Life Sci. 2009 Mar;66(5):757-72. doi: 10.1007/s00018-008-8346-1. LU, S. et al. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology, Amsterdam, v.279, n.1-3, p. 189-195, Jan 2011. MAJUMDAR, M.K. et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol ,1998;176:57–66. [PubMed: 9618145]. MASAKI, Y. et al. Protective effect of Nrf2-ARE activator isolated from green perilla leaves on dopaminergic neuronal loss in a Parkinson's disease model. Eur J Pharmacol,. 2017 Mar 5; 798:26-34. doi: 10.1016/j.ejphar.2017.02.005. Epub 2017 Feb 4. MEZEY, E. et al. Unexpected roles for bone marrow stromal cells (or MSCs): a real promise for cellular, but not replacement, therapy. Oral Dis. 2010 Mar;16(2):129-35. doi: 10.1111/j.1601-0825.2009.01605.x. Epub 2009 Jul 27. MOHAMMAD, M.H. et al. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells. Stem Cells Cloning., 2016 Apr 18; 9:1-15. doi: 10.2147/SCCAA.S94545. eCollection 2016. NEREM, R.M. Cell-based therapies: from basic biology to replacement, repair, and regeneration. Biomaterials, Amsterdam, v.28, n.34, p.5074-5077, Dec 2007. NEUHUBER, B. et al. Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine. 2008 Oct; 9(4):390-9. doi: 10.3171/SPI.2008.9.10.390. NILSSON, S.K.; JOHNSTON, H.M.; COVERDALE, J.A. Spatial localization of transplantesd hematopoietic stem cells: inferences for the localization of stem cells niches. Blood, v.97, n.8, p.2293-9, 2001. NÓBREGA, A.C. et al Levodopa treatment in Parkinson's disease: how does it affect dysphagia management? Parkinsonism Relat Disord. 2014 Mar; 20(3):340-1. doi: 10.1016/j.parkreldis.2013.09.013. Epub 2013 Sep 20. NURI,M.M.; HAFEEZ, S. Intracoronary administration of autologous bone marrow stem cell transplant in myocardial infarction. J Pak Med Assoc. 2011 Jan;61(1):3-5 OH, S.H. et al. Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-mediated endocytosis in a parkinsonian model. Cell Rep,. 2016 Feb 2;14(4):835-49. doi: 10.1016/j.celrep.2015.12.075. Epub 2016 Jan 14. O’BYRNE, M.B. et al. Tyrosine-hydroxylase immunoreactive cells in the rat striatum following treatment with MPPþ. Adv Exp Med Biol ,2000;483:369e74. OWEN, M.Marrow stromal stem cells. . J Cell Sci Suppl. 1988;10:63-76. PACARY, E. et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci,, London, v. 119, .13, p.2667-2678, Mar 2006. PACARY, E. et al. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth. Mol Cell Neurosci. 2007 Jul;35(3):409-23. Epub 2007 Apr 10. PACARY, E.; PETIT, E.; BERNAUDIN, M. Concomitant inhibition of prolyl hydroxylases and ROCK initiates differentiation of mesenchymal stem cells and PC12 towards the neuronal lineage. Biochem Biophys Res Commun, New York, v. 377, n.02, p. 400-406, Dec 2008. PAVON-FUENTES, N. et al. Stromal cell transplant in the 6-OHDA lesion model. Rev Neurol, Barcelona, v.39, n.4, p.326-334, Aug 2004. PATEL, N.K. et al. Benefits of putaminal GDNF infusion in Parkinson disease are maintained after GDNF cessation. Neurology, Hagerstown, v.81, n.13, p.1176-1178, Sep 2013. PAUL, G.; ANISIMOV, S.V. The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie, Paris, v.95, n.12, p.2246-2256, Dec 2013. PETIT, G.H.; OLSSON, T.T.; BRUNDIN, P. The future of cell therapies and brain repair:Parkinson’s disease leads the way. Neuropathol Appl Neurobiol, Oxford, v.40, n.1, p.60-70, Feb 2014 . PROCKOP, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997;276:71–74. [PubMed: 9082988] QI, X. et al. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two compartment bone marrow stromal cell/neuron co-culture system. J Clin Neurosci, Melbourne, v.17, n.07, p.908-913, Jul 2010. RAMÍREZ-ORDÓÑEZ, R.; GARCÍA-ARRARÁS, J.E. Peptidergic, catecholaminergic and morphological properties of avian chromaffin cells are modulated distinctively by growth factors.Brain Res Dev Brain Res,.1995 Jul 14;87(2):160-71. ROMANOV, Y.A.; SVINTSITSKAYA, V.A.; SMIRNOV, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105-10. ROSOVA, I. et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008 Aug;26(8):2173-82. doi: 10.1634/stemcells.2007-1104. Epub 2008 May 29. SANCHEZ-RAMOS, J. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, New York, v.164, n.02, p.247-256, Aug 2000. SINGH, V.; SHERPA, M. Neuronal-Like Differentiation of Murine Mesenchymal Stem Cell Line: Stimulation by Juglans regia L. Oil. Appl Biochem Biotechnol. 2017 Mar 13. doi: 10.1007/s12010-017-2452-1. SINGER, N.G.; CAPLAN, A.I. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457-78. doi: 10.1146/annurev-pathol-011110-130230. TAKAHASHI, K.; YAMANAKA, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, Cambridge, v.126, n.4, p.663-676, Aug 2006. TAKAHASHI, H.; ISHIKAWA, H.; TANAKA, A. Regenerative medicine for Parkinson's disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell. 2017 Apr; 30(2):60-71. doi: 10.1007/s13577-017-0160-3. Epub 2017 Feb 16. TIEU, K. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a009316. doi: 10.1101/cshperspect.a009316. TUAN, R.S.; BOLAND, G.; TULI, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003; 5(1):32-45. Epub 2002 Dec 11. TROPEL, P. et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, Durham, v.24, n.12, p.2868-76, Dec 2006. TORRE, J.C.; SURGEON, J.W. A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry. 1976 Oct 22; 49(2):81-93. VERFAILLIE, C.M. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol, Cambridge, v.12, n.12, p. 502-508, Nov 2002. WANG, F. et al. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci, London, v.11, n.1, p. 52, Apr 2010. WANG, S.; QU, X.; ZHAO, R.C. Clinical applications of mesenchymal stem cells. J Hematol Oncol, 2012; 5: 19. Published online 2012 Apr 30. doi: 10.1186/1756-8722-5-19 WEI, X. et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin, Beijing, v.34, n. 06, p.747-754, Jun 2013. WEN, S.R. et al. Expression of δNp73 in hippocampus of APP/PS1 transgenic mice following GFP-BMSCs transplantation. Neurol Res , 2011 Dec; 33(10):1109-14. doi: 10.1179/1743132811Y.0000000051. WOODBURY, D. et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res, 2000; 61:364–370. [PubMed: 10931522]. XUE, Z.G.; SMITH, J.; LE DOUARIN, N.M. Differentiation of catecholaminergic cells in cultures of embryonic avian sensory ganglia. Proc Natl Acad Sci U S A. 1985 Dec; 82(24): 8800–8804. YAMADA, K. et al. Stereotactic surgery for subthalamic nucleus stimulation under general anesthesia: a retrospective evaluation of Japanese patients with Parkinson's disease. Parkinsonism Relat Disord, 2007 Mar; 13(2):101-7. Epub 2006 Oct 19. YE, M. et al. Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson's disease. Parkinsonism Relat Disord, Kidlington, v.13, n.1, p. 44-49, Feb 2007. YE, X.; HU, J.; CUI, G.Therapy effects of bone marrow stromal cells on ischemic stroke. Oxid Med Cell Longev. 2016;2016:7682960. doi: 10.1155/2016/7682960. Epub 2016 Mar 16. ZUK, P.A. et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002 Dec; 13(12):4279-95.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2022-08-10T14:20:31Zoai:bdtd.uftm.edu.br:tede/865Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:48.407346Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186164414873600