Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_bd791c5407c070b320747e362552aa17
oai_identifier_str oai:bdtd.uftm.edu.br:tede/853
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Expressão do hormônio liberador da corticotrofina (CRH) e seus receptores, e da proteína facilitadora do transporte da glicose (GLUT) em placentas de gestantes com síndromes hipertensivas da gestaçãoPré-eclâmpsia.Hormônio liberador da corticotrofina.Receptores do hormônio liberador da corticotrofina.Proteína facilitadora do transporte da glicose.Placenta.Preeclampsia.Corticotropin-releasing hormone.Corticotropin-releasing hormone receptors.Glucose transporter proteins.Placenta.Anatomia Patológica e Patologia ClínicaObjetivo: avaliar a expressão do CRH, CRH-R1, CRH-R2, GLUT-1 e GLUT-3 nas placentas humanas acometidas pelas síndromes hipertensivas da gestação (SHG), e se existem alterações na expressão desses marcadores nesta entidade. Material e métodos: estudo retrospectivo que avaliou 116 biópsias de placentas humanas entre 2012 a 2014. Os casos com SHG foram classificados em: pré-eclâmpsia (PE), pré-eclâmpsia sobreposta à hipertensão crônica (PSHC), hipertensão crônica (HC) e hipertensão gestacional (HG). Posteriormente, os casos com SHG foram subdivididos em grupo a termo e pré-termo. A expressão do CRH, CRH-R1, CRH-R1, GLUT-1 e GLUT-3 foi avaliada nas vilosidades coriônicas e decídua através da imuno-histoquímica. Resultados: a expressão do CRH foi maior nas vilosidades coriônicas e decídua nas SHG do grupo a termo, enquanto que na decídua dos prematuros foi aumentada na PE e PSHC. O CRH-R1 apresentou maior expressão na PSHC, HC e HG, e menor na PE; na decídua foi aumentada na HG. O CRH-R2 apresentou maior expressão nas vilosidades coriônicas apenas na HG. A expressão do GLUT-1 foi maior nas vilosidades coriônicas nas SHG do grupo a termo; na decídua dos prematuros sua expressão foi reduzida nas SHG de curso crônico e na PE. O GLUT-3 mostra-se aumentado na PSHC e HC do grupo a termo. Conclusão: a gravidade clínica das diferentes SHG favorece variações na síntese do CRH. A maior da concentração de CRH pode reduzir a expressão do CRH-R1 e CRH-R2, ou exacerbá-la. O grau e o tempo de hipóxia parecem regular a expressão do GLUT-1 e GLUT-3 nesta entidade.Purpose: to evaluate the expression of CRH, CRH-R1, CRH-R2, GLUT-1 and GLUT-3 in human placentas affected by hypertensive disorders of pregnancy (HDP), and if there are any changes in the expression of these markers in this entity. Methods: retrospective study that evaluated 116 human placenta biopsies between 2012 and 2014. Cases with HDP were classified as preeclampsia (PE), preeclampsia superimposed on chronic hypertension (PSCH), chronic hypertension (CH) and gestational hypertension (GH). Subsequently, cases with HDP were subdivided into term and preterm group. Expression of CRH, CRH-R1, CRH-R1, GLUT-1 and GLUT-3 were evaluated in chorionic villi and decidua through immunohistochemistry. Results: CRH expression was higher in chorionic villi and decidua in the term group of HDP, whereas in decidua of preterm group it was increased in PE and PSCH. CRH-R1 had greater expression in PSCH, CH and GH and lower in PE; in decidua was increased in GH. CRH-R2 had greater expression in chorionic villi only in GH. GLUT-1 expression was greater in chorionic villi in the term group with HDP; in decidua of premature group, its expression was reduced in chronic HDP and in PE. GLUT-3 was increased in PSCH and CH in term group. Conclusion: clinical severity of different HDP favors variations in CRH synthesis. Increased CRH concentration may reduce or exacerbate the expression of CRH-R1 and CRH-R2. The degree and duration of hypoxia seems to regulate the expression of GLUT-1 and GLUT-3 in this entity.Conselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal do Triângulo MineiroCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisFundação de Ensino e Pesquisa de UberabaUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeCORRÊA, Rosana Rosa Miranda05723858629http://lattes.cnpq.br/4400800291122719MACHADO, Juliana Reis06911408636http://lattes.cnpq.br/5289363102869037HELMO, Fernanda Rodrigues2019-09-05T17:52:37Z2017-12-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfHELMO, Fernanda Rodrigues. Expressão do hormônio liberador da corticotrofina (CRH) e seus receptores, e da proteína facilitadora do transporte da glicose (GLUT) em placentas de gestantes com síndromes hipertensivas da gestação. 2017. 116f . Tese (Doutorado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017 .http://bdtd.uftm.edu.br/handle/tede/853porACOG. Hypertension in pregnancy. Washington: American College of Obstetricians and Gynecologists (ACOG), 2013. 100 AKHLAQ, M.; NAGI, A. H.; YOUSAF, A. W. Placental morphology in pre-eclampsia and eclampsia and the likely role of NK cells. Indian J Pathol Microbiol, v. 55, n. 1, p. 17-21, Jan-Mar 2012. ALTORJAY, Á. T. et al. Use of placental vascularization indices and uterine artery peak systolic velocity in early detection of pregnancies complicated by gestational diabetes, chronic or gestational hypertension, and preeclampsia at risk. Croat Med J v. 58, n. 2, p. 161- 9, 2017. AMARAL, L. M. et al. Preeclampsia: long-term consequences for vascular health. Vasc Health Risk Manag, v. 11, p. 403-15, 2015. ANUPAMA, D.; LAXMI, M.; ASTHA, J. LDH (Lactate Dehydrogenase): a biochemical marker for the prediction of adverse outcomes in pre-eclampsia and eclampsia. J Obstet Gynaecol India, v. 66, n. 1, p. 23-9, 2016. BARROS, L. F. et al. Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta, v. 16, n. 7, p. 623-33, Oct 1995. BARTON, J. R. et al. Mild gestational hypertension remote from term: progression and outcome. Am J Obstet Gynecol, v. 184, n. 5, p. 979-83, Apr 2001. BAUMANN, M. U. et al. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS One, v. 9, n. 8, p. e106037, 2014. BAUMANN, M. U.; ZAMUDIO, S.; ILLSLEY, N. P. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol Cell Physiol v. 293, n. 1, p. C477-85, 2007. BELFORT, M. A. et al. Pregnant women with chronic hypertension and superimposed preeclampsia have high cerebral perfusion pressure. Br J Obstet Gynaecol v. 108, n. 11, p. 1141–47, 2001. BRASIL. Saúde da mulher: Ministério lança protocolo com diretrizes para parto cesariana. Portal Saúde, 2016. Disponível em: < http://portalsaude.saude.gov.br/index.php/cidadao/principal/agencia-saude/22946-ministeriolanca- protocolo-com-diretrizes-para-parto-cesariana>. Acesso em: 17 Jul 2017. BROWN, K. et al. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta, v. 32, n. 12, p. 1041-9, Dec 2011. BUCHBINDER, A. et al. Adverse perinatal outcomes are significantly higher in severe gestational hypertension than in mild preeclampsia. Am J Obstet Gynecol, v. 186, n. 1, p. 66-71, 2002. BURTON, G. J.; YUNG, H. W. Endoplasmic reticulum stress in the pathogenesis of earlyonset pre-eclampsia. Pregnancy Hypertens, v. 1, n. 1-2, p. 72-8, Jan 2011. CANTU, J. et al. Laboratory abnormalities in pregnancy-associated hypertension: frequency and association with pregnancy outcomes. Obstet Gynecol, v. 124, n. 5, p. 933-40, Nov 2014. CERDEIRA, A. S.; KARUMANCHI, S. A. Angiogenic factors in preeclampsia and related disorders. Cold Spring Harb Perspect Med, v. 2, n. 11, Nov 01 2012. CHAIWORAPONGSA, T. et al. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol, v. 10, n. 8, p. 466-80, Aug 2014. CHAPPELL, L. C. et al. Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study. Hypertension, v. 51, n. 4, p. 1002-9, Apr 2008. CICERO, A. F. et al. Independent Determinants of Maternal and Fetal Outcomes in a Sample of Pregnant Outpatients With Normal Blood Pressure, Chronic Hypertension, Gestational Hypertension, and Preeclampsia. J Clin Hypertens (Greenwich), v. 17, n. 10, p. 777-82, Oct 2015. CINDROVA-DAVIES, T. et al. Nuclear factor-kappa B, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am J Pathol, v. 170, n. 5, p. 1511-20, May 2007. CRUZ, M. O.; GAO, W.; HIBBARD, J. U. Obstetrical and perinatal outcomes among women with gestational hypertension, mild preeclampsia, and mild chronic hypertension. Am J Obstet Gynecol, v. 205, n. 3, p. 260.e1-9, 2011. DACAJ, R. et al. Elevated Liver Enzymes in Cases of Preeclampsia and Intrauterine Growth Restriction. Med Arch, v. 70, n. 1, p. 44-7, Feb 2016. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. DAHLSTROM, B. et al. Placenta weight in pre-eclampsia. Acta Obstet Gynecol Scand, v. 87, n. 6, p. 608-11, 2008. DAI, D. M. et al. Hematocrit and plasma albumin levels difference may be a potential biomarker to discriminate preeclampsia and eclampsia in patients with hypertensive disorders of pregnancy. Clin Chim Acta, v. 464, p. 218-22, 2017. DONG, X. et al. Proteinuria in preeclampsia: not essential to diagnosis but related to disease severity and fetal outcomes. Pregnancy Hypertens, v. 8, p. 60-64, 2017. EGBOR, M. et al. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG, v. 113, n. 5, p. 580- 9, 2006. EILAND, E.; NZERUE, C.; FAULKNER, M. Preeclampsia 2012. J Pregnancy, v. 2012, p. 586578, 2012. ENGLISH, F. A.; KENNY, L. C.; MCCARTHY, F. P. Risk factors and effective management of preeclampsia. Integr Blood Press Control, v. 8, p. 7-12, 2015. ESTERMAN, A. et al. The effect of hypoxia on human trophoblast in culture: morphology, glucose transport and metabolism. Placenta, v. 18, n. 2-3, p. 129-36, Mar-Apr 1997. FADALTI, M. et al. Placental corticotropin-releasing factor. An update. Ann N Y Acad Sci, v. 900, p. 89-94, 2000. GAO, L. et al. Differential regulation of glucose transporters mediated by CRH receptor type 1 and type 2 in human placental trophoblasts. Endocrinology, v. 153, n. 3, p. 1464-71, Mar 2012. GAROVIC, V. D. The role of angiogenic factors in the prediction and diagnosis of preeclampsia superimposed on chronic hypertension. Hypertension, v. 59, n. 3, p. 555-7, Mar 2012. GEORGE, I. O.; JEREMIAH, I. Perinatal outcome of babies delivered to eclamptic mothers: a prospective study from a nigerian tertiary hospital. Int J Biomed Sci, v. 5, n. 4, p. 390-4, Dec 2009. GIBBINS, K. J. et al. Stillbirth, hypertensive disorders of pregnancy, and placental pathology. Placenta, v. 43, p. 61-8, Jul 2016. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. GOLAND, R. S.; CONWELL, I. M.; JOZAK, S. The effect of pre-eclampsia on human placental corticotrophin-releasing hormone content and processing. Placenta, v. 16, n. 4, p. 375-82, Jun 1995. GUPTA, S.; AGARWAL, A.; SHARMA, R. K. The role of placental oxidative stress and lipid peroxidation in preeclampsia. Obstet Gynecol Surv, v. 60, n. 12, p. 807-16, Dec 2005. HAHN, T. et al. Placental glucose transporter expression is regulated by glucocorticoids. J Clin Endocrinol Metab v. 84, n. 4, p. 1445-52, 1999. HARPER, L. M. et al. Gestational Age of Delivery in Pregnancies Complicated by Chronic Hypertension. Obstet Gynecol, v. 127, n. 6, p. 1101-9, Jun 2016. HAYASHI, M. et al. Induction of glucose transporter 1 expression through hypoxiainducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. J Endocrinol v. 183, n. 1, p. 145-54, 2004. HEAZELL, A. E. et al. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta, v. Suppl A, p. S33-40, 2007. HELMO, F. R. et al. Morphological and inflammatory changes in the skin of autopsied fetuses according to the type of stress. Pathol Res Pract, v. 211, n. 11, p. 858-64, Nov 2015. HENAO, D. E.; SALEEM, M. A. Proteinuria in preeclampsia from a podocyte injury perspective. Curr Hypertens Rep, v. 15, n. 6, p. 600-5, Dec 2013. HOBEL, C. J. et al. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks' gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol v. 180, n. 1 Pt 3, p. S257-63, 1999. HUTCHEON, J. A.; LISONKOVA, S.; JOSEPH, K. S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol, v. 25, n. 4, p. 391-403, Aug 2011. HUTCHEON, J. A. et al. Optimal timing of delivery in pregnancies with pre-existing hypertension. BJOG, v. 118, n. 1, p. 49-54, Jan 2011. HWANG, J. W. et al. The risk factors that predict chronic hypertension after delivery in women with a history of hypertensive disorders of pregnancy. Medicine (Baltimore), v. 94, n. 42, p. e1747, 2015. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. JANSSON, T.; WENNERGREN, M.; ILLSLEY, N. P. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab, v. 77, n. 6, p. 1554-62, Dec 1993. JANZEN, C. et al. Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction. Placenta v. 34, n. 11, p. 1072-8, 2013. JARDIM, L. L. et al. Is the imbalance between pro-angiogenic and anti-angiogenic factors associated with preeclampsia? Clin Chim Acta v. 447, p. 34-8, 2015. JOHNSTON, R. C. et al. Assessing progression from mild to severe preeclampsia in expectantly managed preterm parturients. Pregnancy Hypertens, v. 6, n. 4, p. 340-343, Oct 2016. KAHHALE, S.; ZUGAIB, M. Conceito, classificação e incidência das síndromes hipertensivas na gestação. Rev Bras Hipertens, v. 4, n. 3, p. 139-44, 1997. KALANTARIDOU, S. N. et al. Reproductive corticotropin releasing hormone, implantation, and fetal immunotolerance. Crit Rev Clin Lab Sci, v. 44, n. 5-6, p. 461-81, 2007. KARTERIS, E. et al. Reduced expression of corticotropin-releasing hormone receptor type-1 alpha in human preeclamptic and growth-restricted placentas. J Clin Endocrinol Metab, v. 88, n. 1, p. 363-70, Jan 2003. KARTERIS, E. et al. The role of corticotropin-releasing hormone receptors in placenta and fetal membranes during human pregnancy. Mol Genet Metab, v. 72, n. 4, p. 287-96, Apr 2001. KARTERIS, E. et al. Preeclampsia is associated with impaired regulation of the placental nitric oxide-cyclic guanosine monophosphate pathway by corticotropin-releasing hormone (CRH) and CRH-related peptides. J Clin Endocrinol Metab v. 90, n. 6, p. 3680-7, 2005. KAY, H. H.; ZHU, S.; TSOI, S. Hypoxia and lactate production in trophoblast cells. Placenta, v. 28, n. 8-9, p. 854-60, Aug-Sep 2007. KHAN, H. et al. Quantitative expression and immunohistochemical detection of glucose transporters, GLUT1 and GLUT3 in the rabbit placenta during successful pregnancy. J Vet Med Sci, v. 73, n. 9, p. 1177-83, Sep 2011. KHAN, K. S. et al. WHO analysis of causes of maternal death: a systematic review. Lancet, v. 367, n. 9516, p. 1066-74, Apr 01 2006. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. KING, B. R.; SMITH, R.; NICHOLSON, R. C. The regulation of human corticotrophinreleasing hormone gene expression in the placenta. Peptides, v. 22, n. 5, p. 795-801, May 2001. KUMRU, S. et al. Correlation of maternal serum high-sensitive C-reactive protein levels with biochemical and clinical parameters in preeclampsia. Eur J Obstet Gynecol Reprod Biol, v. 124, n. 2, p. 164-7, Feb 01 2006. LAATIKAINEN, T. et al. Corticotropin-releasing hormone in maternal and cord plasma in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol, v. 39, n. 1, p. 19-24, Mar 21 1991. LECARPENTIER, E. et al. Risk factors of superimposed preeclampsia in women with essential chronic hypertension treated before pregnancy. PLoS One v. 8, n. 5, p. e62140, 2013. LEEMAN, L.; FONTAINE, P. Hypertensive disorders of pregnancy. Am Fam Physician, v. 78, n. 1, p. 93-100, Jul 01 2008. LEONCE, J. et al. Glucose production in the human placenta. Placenta, v. 27 Suppl A, p. S103-8, Apr 2006. LIAPI, C. A. et al. Corticotropin-releasing-hormone levels in pregnancy-induced hypertension. Eur J Obstet Gynecol Reprod Biol, v. 68, n. 1-2, p. 109-14, Sep 1996. LIU, C. M.; CHENG, P. J.; CHANG, S. D. Maternal complications and perinatal outcomes associated with gestational hypertension and severe preeclampsia in Taiwanese women. J Formos Med Assoc, v. 107, n. 2, p. 129-38, Feb 2008. LIU, Z.; AFINK, G. B.; DIJKE, P. T. Soluble fms-like tyrosine kinase 1 and soluble endoglin are elevated circulating anti-angiogenic factors in pre-eclampsia. Pregnancy Hypertens, v. 2, n. 4, p. 358-67, Oct 2012. LO, J. O.; MISSION, J. F.; CAUGHEY, A. B. Hypertensive disease of pregnancy and maternal mortality. Curr Opin Obstet Gynecol, v. 25, n. 2, p. 124-32, Apr 2013. LOCKWOOD, C. J. et al. Decidual hemostasis, inflammation, and angiogenesis in preeclampsia. Semin Thromb Hemost, v. 37, n. 2, p. 158-64, Mar 2011. LÜSCHER, B. P. et al. Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia. Placenta, v. 55, p. 94-99, 2017. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. MANUCK, T. A. et al. Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. Am J Obstet Gynecol, v. 215, n. 1, p. 103 e1-103 e14, Jul 2016. MASTORAKOS, G.; ILIAS, I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci, v. 997, p. 136-49, Nov 2003. MAYNARD, S. E.; KARUMANCHI, S. A. Angiogenic factors and preeclampsia. Semin Nephrol, v. 31, n. 1, p. 33-46, Jan 2011. MAYOR-LYNN, K. et al. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci, v. 18, n. 1, p. 46-56, Jan 2011. MCNAMARA, H. et al. Risk factors for high and low placental weight. Paediatr Perinat Epidemiol, v. 28, n. 2, p. 97-105, Mar 2014. MITSUI, T. et al. Differences in uterine artery blood flow and fetal growth between the early and late onset of pregnancy-induced hypertension. J Med Ultrason v. 43, n. 4, p. 509-17, 2016. MOLVAREC, A. et al. Increased serum heat-shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Cell Stress Chaperones, v. 14, n. 2, p. 151-9, Mar 2009. MUSTAFA, R. et al. A comprehensive review of hypertension in pregnancy. J Pregnancy, v. 2012, p. 105918, 2012. NAIR, A.; SAVITHA, C. Estimation of serum uric acid as an indicator of severity of preeclampsia and perinatal outcome. J Obstet Gynaecol India, v. 67, n. 2, p. 109-18, 2017. NAKIMULI, A. et al. Hypertension persisting after pre-eclampsia: a prospective cohort study at Mulago Hospital, Uganda. PLoS One, v. 8, n. 12, p. e85273, 2013. NEERHOF, M. G. et al. Pathophysiology of chronic nitric oxide synthase inhibition-induced fetal growth restriction in the rat. Hypertens Pregnancy, v. 30, n. 1, p. 28-36, 2011. NEZI, M.; MASTORAKOS, G.; MOUSLECH, Z. Corticotropin Releasing Hormone And The Immune/Inflammatory Response. In: DE GROOT, L. J.;CHROUSOS, G., et al (Ed.). Endotext. South Dartmouth (MA), 2000. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. NG, E. K. O. et al. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem, v. 9 n. 5, p. 727-31, 2003. NOBUMOTO, E. et al. Comparison of kidney function between gestational hypertension and preeclampsia. Acta Med Okayama, v. 71, n. 2, p. 161-9, 2017. OGAWA, M. et al. Plasma antithrombin levels correlate with albumin and total protein in gestational hypertension and preeclampsia. Pregnancy Hypertens, v. 4, n. 2, p. 174-7, Apr 2014. OLIVEIRA, L. G.; KARUMANCHI, A.; SASS, N. Preeclampsia: oxidative stress, inflammation and endothelial dysfunction. Rev Bras Ginecol Obstet, v. 32, n. 12, p. 611-16, 2010. PALEI, A. C. et al. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol (Oxf), v. 208, n. 3, p. 224-33, Jul 2013. PASSINI, R., JR. et al. Brazilian multicentre study on preterm birth (EMIP): prevalence and factors associated with spontaneous preterm birth. PLoS One, v. 9, n. 10, p. e109069, 2014. PERNI, U. et al. Angiogenic factors in superimposed preeclampsia: a longitudinal study of women with chronic hypertension during pregnancy. Hypertension, v. 59, n. 3, p. 740-6, Mar 2012. PETSAS, G. et al. Aberrant expression of corticotropin-releasing hormone in pre-eclampsia induces expression of FasL in maternal macrophages and extravillous trophoblast apoptosis. Mol Hum Reprod, v. 18, n. 11, p. 535-45, Nov 2012. PHAD, N. et al. The effect of pregnancy-induced hypertensive disorders on placental growth along short and long axes and neonatal outcomes. Aust N Z J Obstet Gynaecol, v. 55, n. 3, p. 239-44, Jun 2015. POWERS, R. W. et al. Soluble fms-Like tyrosine kinase 1 (sFlt1), endoglin and placental growth factor (PlGF) in preeclampsia among high risk pregnancies. PLoS One v. 5, n. 10, p. e13263, 2010. PRATT, A. et al. Placenta-derived angiogenic proteins and their contribution to the pathogenesis of preeclampsia. Angiogenesis v. 18 n. 2, p. 115-23, 2015. REDMAN, C. W.; SARGENT, I. L. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol, v. 76, n. 1-2, p. 61-7, Dec 2007. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. REDMAN, C. W. G.; ROBERTS, J. M. Management of pre-eclampsia. Lancet v. 341, n. 8858, p. 1451-4, 1993. REZK, M. et al. Maternal and fetal morbidity following discontinuation of antihypertensive drugs in mild to moderate chronic hypertension: A 4-year observational study. Pregnancy Hypertens, v. 6, n. 4, p. 291-294, Oct 2016. REZK, M.; GAMAL, A.; EMARA, M. Maternal and fetal outcome in de novo preeclampsia in comparison to superimposed preeclampsia: a two-year observational study. Hypertens Pregnancy, v. 34, n. 2, p. 137-44, May 2015. RILEY, S. C.; CHALLIS, J. R. Corticotrophin-releasing hormone production by the placenta and fetal membranes. Placenta, v. 12, n. 2, p. 105-19, Mar-Apr 1991. ROBERTS, J. M.; LAIN, K. Y. Recent insights into the pathogenesis of pre-eclampsia. Placenta, v. 23, n. 5, p. 359-72, 2002. ROBERTS, J. M.; REDMAN, C. W. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet v. 341, n. 8858, p. 1447-51, 1993. SABINO, A. T. et al. High blood pressure during pregnancy is not a protective factor for preterm infants with very low birth weight. A case-control study. Rev Bras Ginecol Obstet, v. 39, n. 4, p. 155-61, 2017. SALMANI, D. et al. Study of structural changes in placenta in pregnancy-induced hypertension. J Nat Sci Biol Med, v. 5, n. 2, p. 352-5, Jul 2014. SATTAR, N.; GREER, I. A. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ, v. 325, n. 7356, p. 157-60, Jul 20 2002. SEHRINGER, B. et al. mRNA expression profiles for corticotrophin-releasing hormone, urocortin, CRH-binding protein and CRH receptors in human term gestational tissues determined by real-time quantitative RT-PCR. J Mol Endocrinol, v. 32, n. 2, p. 339-48, Apr 2004. SELIGMAN, S. P. et al. The role of nitric oxide in the pathogenesis of preeclampsia. Am J Obstet Gynecol, v. 171, n. 4, p. 944-8, Oct 1994. SEOW, K. M. et al. The correlation between renal function and systolic or diastolic blood pressure in severe preeclamptic women. Hypertens Pregnancy v. 24, n. 3, p. 247-57, 2005. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. SHEN, M. et al. Comparison of risk factors and outcomes of gestational hypertension and pre-eclampsia. PLoS One, v. 12, n. 4, p. e0175914, 2017. SHIBASAKI, T. et al. Corticotropin-releasing factor-like activity in human placental extracts. J Clin Endocrinol Metab, v. 55, n. 2, p. 384-6, Aug 1982. SHIN, B. C. et al. Glucose transporter GLUT3 in the rat placental barrier: a possible machinery for the transplacental transfer of glucose. Endocrinology, v. 138, n. 9, p. 3997- 4004, Sep 1997. SIBAI, B. M. Chronic hypertension in pregnancy. Obstet Gynecol, v. 100, n. 2, p. 369-77, Aug 2002. SIBAI, B. M. et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med v. 339, n. 10, p. 667-71, 1998 SILASI, M. et al. Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia. Obstet Gynecol Clin North Am, v. 37, n. 2, p. 239-53, Jun 2010. SIRCAR, M.; THADHANI, R.; KARUMANCHI, S. A. Pathogenesis of preeclampsia. Curr Opin Nephrol Hypertens, v. 24, n. 2, p. 131-8, Mar 2015. SLOMINSKI, A. T. et al. Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?". Ann N Y Acad Sci v. 885, p. 287-311, 1999. SONG, J.; LI, Y.; AN, R. F. Identification of Early-Onset Preeclampsia-Related Genes and MicroRNAs by Bioinformatics Approaches. Reprod Sci, v. 22, n. 8, p. 954-63, Aug 2015. STEEGERS, E. A. P. et al. Pre-eclampsia. Lancet v. 376, p. 631-44, 2010. SURANYI, A. et al. Evaluation of placental vascularization by three-dimensional ultrasound examination in second and third trimester of pregnancies complicated by chronic hypertension, gestational hypertension or pre-eclampsia. Pregnancy Hypertens, v. 8, p. 51- 59, Apr 2017. TADOKORO, C. et al. Localization of human placental glucose transporter 1 during pregnancy. An immunohistochemical study. Histol Histopathol, v. 11, n. 3, p. 673-81, Jul 1996. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. TETTEH, P. W. et al. Assessment of oxidative stress in early and late onset pre-eclampsia among ghanaian women. J West Afr Coll Surg v. 5, n. 1, p. 42-58, 2015. THANGARATINAM, S. et al. Prediction of complications in early-onset pre-eclampsia (PREP): development and external multinational validation of prognostic models. BMC Med, v. 15, n. 1, p. 68, Mar 30 2017. THOMSON, M. The physiological roles of placental corticotropin releasing hormone in pregnancy and childbirth. J Physiol Biochem, v. 69, n. 3, p. 559-73, Sep 2013. TOMAS, S. Z. et al. Trophoblast apoptosis in placentas from pregnancies complicated by preeclampsia. Gynecol Obstet Invest, v. 71, n. 4, p. 250-5, 2011. TUULI, M. G. et al. Perinatal outcomes in women with preeclampsia and superimposed preeclampsia: do they differ? Am J Obstet Gynecol, v. 204, n. 6, p. 508.e1-7, 2011. UFTM. Manual para apresentação de trabalhos acadêmicos baseado nas normas de documentação da ABNT 2.Uberaba: Biblioteca Central - Universidade Federal do Triângulo Mineiro, 2013. 110 p VALENT, A. M. et al. Expectant management of mild preeclampsia versus superimposed preeclampsia up to 37 weeks. Am J Obstet Gynecol, v. 212, n. 4, p. 515 e1-8, Apr 2015. VANEK, M. et al. Chronic hypertension and the risk for adverse pregnancy outcome after superimposed pre-eclampsia. Int J Gynaecol Obstet, v. 86, n. 1, p. 7-11, Jul 2004. VEERBEEK, J. H. et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta, v. 35, n. 9, p. 696-701, Sep 2014. VILLAR, J. et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol, v. 194, n. 4, p. 921-31, Apr 2006. VINNARS, M. T. et al. The severity of clinical manifestations in preeclampsia correlates with the amount of placental infarction. Acta Obstet Gynecol Scand, v. 90, n. 1, p. 19-25, Jan 2011. VYAKARANAM, S. et al. Study of serum uric acid and creatinine in hypertensive disorders of pregnancy. Int J Med Sci Public Health, v. 4, n. 10, p. 1424-1428, 2015. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. WADHWA, P. D. et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol, v. 191, n. 4, p. 1063-9, Oct 2004. WAKAHASHI, S. et al. Effects of corticotropin-releasing hormone and stresscopin on vascular endothelial growth factor mRNA expression in cultured early human extravillous trophoblasts. Endocrine, v. 33, n. 2, p. 144-51, Apr 2008. WARREN, W. B.; SILVERMAN, A. J. Cellular localization of corticotrophin releasing hormone in the human placenta, fetal membranes and decidua. Placenta, v. 16, n. 2, p. 147- 56, Mar 1995. WHO. Preterm birth. 2017. Disponível em: < http://www.who.int/topics/preterm_birth/en/ >. Acesso em: 29 Jul. XIONG, X. et al. Association of preeclampsia with high birth weight for age. Am J Obstet Gynecol, v. 183, n. 1, p. 148-55, Jul 2000. XIONG, X. et al. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol, v. 155, n. 3, p. 203-9, Feb 01 2002. XIONG, X.; FRASER, W. D. Impact of pregnancy-induced hypertension on birthweight by gestational age. Paediatr Perinat Epidemiol, v. 18, n. 3, p. 186-91, May 2004. YALLAMPALLI, C.; GARFIELD, R. E. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol v. 169, n. 5, p. 1316-20, 1993. YOU, X. et al. Corticotropin-releasing hormone stimulates estrogen biosynthesis in cultured human placental trophoblasts. Biol Reprod, v. 74, n. 6, p. 1067-72, Jun 2006. YUCE, T. et al. Effect of the timing of delivery on perinatal outcomes at gestational hypertension. Interv Med Appl Sci v. 7, n. 2, p. 59-62, 2015. YUCESOY, G. et al. Maternal and perinatal outcome in pregnancies complicated with hypertensive disorder of pregnancy: a seven year experience of a tertiary care center. Arch Gynecol Obstet, v. 273, n. 1, p. 43-9, Nov 2005. ZAMUDIO, S.; BAUMANN, M. U.; ILLSLEY, N. P. Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters. Placenta, v. 27, n. 1, p. 49-55, Jan 2006. Helmo, F. R. Expressão do CRH e seus receptores, e da GLUT em placentas de gestantes com SHG, 2017. ZAMUDIO, S. et al. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS One, v. 5, n. 1, p. e8551, Jan 01 2010.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-09-06T04:00:20Zoai:bdtd.uftm.edu.br:tede/853Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:25.235033Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186161057333248