Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_dcfc630a9d49f4af910bd1aeb2a54d23
oai_identifier_str oai:bdtd.uftm.edu.br:tede/182
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Estudo farmacofórico sobre isomanídeos peptidomiméticos inibidores das calicreínas teciduais humanas 5 e 7CalicreínaIsomanideoDocking molecularDFTFarmacóforoKallikreinIsomannideMolecular dockingDFTPharmacophoreCiências BiológicasAs quinze calicreínas teciduais humanas (KLKs) são endopeptidases, cujos genes pertencem ao maior cluster ininterrupto de enzimas do genoma, e nomeadas de 1 a 15 de acordo com sua ordem de descoberta. Apesar do domínio catalítico comum (serino-protease), as calicreínas possuem relativamente pouca relação filogenética com a calicreína plasmática e compartilham a conservada tríade de resíduos catalíticos da família a qual pertencem, His57, Asp102 e Ser195. Mas é segundo a natureza do resíduo 189 (representante do subsítio S1 do sítio ativo), que suas atividades (preferências por diferentes substratos) são classificadas em quimotripsina-símile ou tripsina-símile. As KLKs humanas podem ser subdivididas em vários grupos tecido-específicos, os quais cumprem inúmeras tarefas ao longo da vida. Distúrbios concomitantes à regulação alterada de suas atividades variam de acordo com local onde seus genes são expressos. As KLKs 5 e 7 apresentam atividade tríptica e quimotríptica respectivamente. São normalmente encontradas em vários tecidos, porém ambas são especificamente abundantes nas camadas granular e espinhosa da epiderme, onde degradam as proteínas do corneodesmossomos, levando à descamação. Além de desempenhar papéis em desordens da pele como dermatite atópica, psoríase e síndrome de Netherton, podem digerir vários componentes da matriz extracelular, contribuindo para a disseminação metastática de células tumorais em vários tipos de cânceres, como o carcinoma ovariano epitelial e pancreático. As KLKs são muitas vezes mantidas inibidas por uma variedade de inibidores endógenos, que, em equilíbrio fino com a atividade enzimática são essenciais para a homeostase tecidual. Várias estratégias vêm sendo aplicadas visando o projeto de inibidores de serino-proteases. Isomanídeos são compostos originados da desidratação do D-manitol, que apresentam uma estrutura bicíclica característica. Em nosso trabalho, foi feito um estudo farmacofórico computacional com compostos derivados de isomanídeos, divididos em duas séries: amidas e ésteres. Em vista de resultados experimentais prévios, sabia-se que o mecanismo de inibição desses compostos varia de reversível competitiva a reversível não competitiva. A busca através do servidor CASTp, apontou os prováveis exossítios de interação para a KLK5 e KLK7, os quais, juntamente com os sítios ativos, serviram de bolsões receptores dos compostos separadamente, pelo método de docking molecular. As posições gerais dos inibidores nas docagens não foram significativamente próximas daquelas nos testes cinéticos, o que já era esperado. A análise da variação das conformações segundo os ângulos de torção também não pode contribuir para uma padronização das afinidades dos isomanídeos, devido à sua liberdade conformacional. Porém, observou-se que o inibidor não-competitivo AM04 apresentou escore relativamente alto em um dos exossítios encontrados, mais provável de influenciar conformacionalmente a disposição dos resíduos do sitio ativo da KLK5. O outro composto não-competitivo, AM05, apresentou menor score para o exossítio de maior identidade com o sítio ativo e score alto para os demais. Este achado principalmente corrobora com provável presença de um ou vários sítios com significativa atividade alostérica na superfície da enzima, o que, com maiores estudos, pode ser estendido à KLK7 e demais calicreínas. Além disso, os cálculos DFT, da estrutura eletrônica dos inibidores, mostraram que, na KLK5, o HOMO da AM04 e LUMO da AM05 estão correlacionados às suas interações com os sítios alostéricos. A abordagem de outros métodos de predição, como dinâmica molecular, possibilitariam maiores detalhes sobre a influência desses ligantes no comprometimento ou não da abertura e capacidade de acomodação de outros compostos nos sítios ativos, essencialmente da KLK5. O desenvolvimento de inibidores para KLK5 e KLK7 pode ainda ajudar a elucidar os papéis fisiopatológicos das calicreínas e no projeto de novos inibidores.The fifteen human tissue kallikrein (KLKs) are endopeptidases, whose genes belong to the largest uninterrupted cluster of enzymes in genome, and named 1-15 according to their order of discovery. Despite the common catalytic domain (serine protease), they have relatively little phylogenetic relationship with plasma kallikrein. They share the conserved catalytic triad residues of the family to which they belong, His57, Asp102 and Ser195. However, their activities (preference for different substrates) are classified according to the nature of the residue 189 (representative of the S1 subsite of the active site), as chymotrypsin-like or trypsin-like. Human KLKs can be subdivided into various tissue-specific groups, which fulfill numerous tasks throughout life. Disorders that occur due altered regulation of kallikreins activities vary according to where their genes are expressed. KLK5 and 7 present tryptic and quimotryptic activities, respectively. Both are usually found in many tissues, but they are specifically abundant in spinous and granular layers of the epidermis, where they degrade the proteins of corneodesmossomos, leading to desquamation. In addition to playing role in skin disorders such as atopic dermatitis, psoriasis and Netherton's syndrome, the two enzymes are able to digest multiple components of the extracellular matrix, leading to metastatic spread of tumor cells in various types of cancers such as epithelial ovarian carcinoma and pancreatic adenocarcinoma. KLKs are often maintained inhibited by a variety of endogenous inhibitors, whichare in fine equilibrium with the enzymatic activity, essential for tissue homeostasis. Several strategies have been applied in order to design inhibitors to serine proteases. Isomannides are compounds derived from D-mannitol dehydration, which possess a characteristic bicyclic structure. In our work, a computational pharmacophoric study was done with compounds derived from isomannide, divided into two series: amides and esters. In view of previous experimental results, it was known that the mechanism of inhibition of those compounds range from reversible competitive to reversible non-competitive. The search through CASTp online server pointed probable exosites for interaction in KLK5 and KLK7. Such exosites, in addition to the active sites, were used as receptor pockets for the compounds separately by molecular docking method. General positions of the docking inhibitors were not significantly close to those in the kinetic assays. That result was expected. Conformational analysis of torsion angles didn’t contribute to standardization of isomannides affinities to receptors, mainly due the large conformational freedom of those compounds. In other hand, it was observed that the non-competitive inhibitor, AM04 showed relatively high score in one exosite, topographically more likely to influence conformation disposition of the active site residues of KLK5. The other non-competitive compound, AM05, showed lower score for the exosite of greater identity with the active site, and score high for the others allosteric pockets. That result corroborates with probable presence of one or several allosteric sites with significant activity on the enzyme surface, whichcan be extended to other kallikreins and KLK7 through further studies. Additionally, electronic structure DFT calculations of inhibitors showed that, in KLK5, the HOMO of AM04 and LUMO of AM05 are favorably correlated to their interactions with allosteric sites. Other prediction methods approach, such as molecular dynamics, would give details about the influence of those ligands involvement in accommodation of other compounds in the active sites, primarily in KLK5. The development of inhibitors for KLK5 and KLK7 may also help elucidate the pathophysiological roles of kallikrein and the designing of new drugs.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de MedicinaBrasilUFTMCurso de Pós-Graduação em Ciências FisiológicasABRAHÃO Júnior, Odonírio85382671672http://lattes.cnpq.br/4202309588377295SILVA, Fernando Freitas Siqueira2015-12-10T13:53:40Z2013-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfSILVA, Fernando Freitas Siqueira. Estudo farmacofórico sobre isomanídeos peptidomiméticos inibidores das calicreínas teciduais humanas 5 e 7. 2013. 95f. Dissertação(Mestrado em Ciências Fisiológicas) - Curso de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2013.http://bdtd.uftm.edu.br/handle/tede/182porAdvanced Chemistry Development I. ChemSketch 12.0. Toronto; 2013. Avgeris M, Papachristopoulou G, Polychronis A, Scorilas A. Down-regulation of kallikrein-related peptidase 5 (KLK5) expression in breast cancer patients: a biomarker for the differential diagnosis of breast lesions. Clinical Proteomics. 2011;8(1):1-11. Bachrach SM. Computational Organic Chemistry. Hoboken, Nova Jersey: Wiley; 2007. Band V, Blaber M, Clements J, Courty Y, Diamandis P, Fritz H, Lilja H, Maltais L, Olsson Y, Petraki C, Scorilas A, Sotiropoulou G, Stephan C, Talieri M & Yousef G. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins. Biological Chemistry. 2006;387(6):637-41. Barros TG, Pinheiro S, Williamson JS, Tanuri A, Gomes M, Pereira HS, Brindeiro RM, Neto JBA, Antunes OC, Muri EMF. Pseudo-peptides derived from isomannide: inhibitors of serine proteases. Amino Acids [Internet]. 2010 [acesso em 23 jan. 2012];38(3):701-9. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/19330426. Beaubien G, Rosinski-Chupin I, Mattei M, Chrétien M, Seidah N. Gene Structure and Chromosomal Localization of Plasma Kallikreint. Biochemistry. 1991;30(6);1628-35. Becke AD. A new mixing of Hartree-Fock & local density-functional theories. The Journal of Chemical Physics. 1993;98(2):1372-7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne PE. The Protein Data Bank. Nucleic Acids Research. 2000;28(1):235-42. Bhoola K, Figueroa D & Worthy K. Bioregulation of Kinins: Kallikreins, Kininogens, and Kininases. Pharmacological Reviews. 1992;44(1):1-80. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, Dubus P, Hovnanian A. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. Journal of Experimental Medicine. 2009;206(5):1135-47. Brown T, Lemay H, Bursten B. Química: a ciência central. 9a ed. Prentice-Hall; 2005. Bruice PY. Organic Chemistry. 4a ed. Upper Saddle River; 2004. Burke K. Perspective on density functional theory. The Journal of Chemical Physics. 2012; 136:150901. Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, Egelrud T, Simon M, Serre, G. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 & SCCE/KLK7/hK7. The Journal of Investigative Dermatology. 2004;122(5):1235-44. Cramer CJ. Essentials of Computational Chemistry: Theories & Models. 2a ed. Wiley; 2006. Debela M, Beaufort N, Magdolen V, Schechter NM, Craik CS, Schmitt M, Bode W, Goettig P. Structures & specificity of the human kallikrein-related peptidases KLK 4, 5, 6, & 7. Biological Chemistry [Internet]. 2008 [acesso em 18 jul. 2013];389(6):623-32. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/18627343. Debela M, Goettig P, Magdolen V, Huber R, Schechter NM, Bode W. Structural basis of the zinc inhibition of human tissue kallikrein 5. Journal of Molecular Biology. 2007a; 373(4):1017-31. Debela M, Hess P, Magdolen V, Schechter NM, Steiner T, Huber R, Schechter NM, Bode W. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proceedings of the National Academy of Sciences of the United States of America. 2007b;104(41):16086-91. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural & topographical mapping of functionally annotated residues. Nucleic Acids Research. 2006;34:116-8. Eldridge M, Murray C, Auton T, Paolini G & Mee R. Empirical scoring functions: I . The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design. 1997;11(5):425-445. Emami N, Diamandis EP. Utility of Kallikrein-Related Peptidases (KLKs) as Cancer Biomarkers: Mini-Review. Clinical Chemistry. 2008;54(10):1600-7. Fernández IS, Ständker L, Mägert H-J, Forssmann W-G, Giménez-Gallego G, Romero A. Crystal structure of human epidermal kallikrein 7 (hK7) synthesized directly in its native state in E. coli: insights into the atomic basis of its inhibition by LEKTI domain 6 (LD6). Journal of Molecular Biology. 2008;377(5):1488-97. Frey E, Kraut H & Werle E. Über Die Blutzuckersenkende Wirkung Des Kallikreins (Padutins). Klinische Wochenschrift. 1932;11(20):846-9. Friesner R, Banks JL, Murphy RB, Halgren T, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin, PS. Glide: a new approach for rapid, accurate docking & scoring. 1. Method & assessment of docking accuracy. Journal of Medicinal Chemistry. 2004;47(7):1739-49. Friesner R, Murphy R. Extra Precision Glide: docking & scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry. 2006;49(21):6177-96. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D J.Gaussian 09, Revision A.1. Wallingford; 2009. Goettig P, Magdolen V, Brandstetter H. Natural & synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie. 2010;92(11):1546-67. Halgren T. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009;49:377-389. Halgren T, Murphy RB, Friesner R a, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking & scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry [Internet]. 2004;47(7):1750-9. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/15027866. Hartley B. Proteolytic enzymes. Annual Review of Biochemistry. 1960;29:45-72. Harvey T, Hooper J, Myers S, Stephenson S, Ashworth L & Clements J. Genomics Proteomics and Bioinformatics: Tissue-specific Expression Patterns and Fine Mapping of the Human Kallikrein (KLK) Locus on Proximal 19q13.4. Journal of Biological Chemistry. 2000, 275, 37397-37406. doi:10.1074/jbc.M004525200. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review. American Physical Society; 1964;136(3B):B864-B871. Johnson SK, Ramani VC, Hennings L, Haun RS. Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. American Cancer Society. 2007;109(9):1811-20. Jorgensen WL., Ulmschneider JP & Tirado-Rives J. Free Energies of Hydration from a Generalized Born Model and an All-Atom Force Field. Journal of Physical Chemistry B. 2004;108:16264-70. Jorgensen WL, Maxwell DS & Tirado-Rives J. Development & Testing of the OPLS All-Atom Force Field on Conformational Energetics & Properties of Organic Liquids. Journal of American Chemical Society. 1996;118(45):11225-36. Jorgensen WL & Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. Journal of the American Chemical Society. 1988;110(6):1657-66. Kaminski GA, Friesner RA, Tirado-Rives J & Jorgensen WL. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. Journal of Physical Chemistry B. 2001;105 (28):6474-87. Kinch LN & Grishin NV. Bioinformatics perspective on rhomboid intramembrane protease evolution and function. Biochimica et Biophysica Acta. 2013; 1828(12):2937-43. Kohn W, Sham LJ. Self-Consistent Equations Including Exchange & Correlation Effects. Physical Review. 1965;140:1133-8. Kontos CK, Chantzis D, Papadopoulos IN, Scorilas A. Kallikrein-related peptidase 4 (KLK4) mRNA predicts short-term relapse in colorectal adenocarcinoma patients. Cancer Letters. 2013;330(1):106-12. Korbakis D, Gregorakis AK, Scorilas A. Quantitative Analysis of Human Kallikrein 5 (KLK5) Expression in Prostate Needle Biopsies: An Independent Cancer Biomarker. 2009; 55(5):904-13. Kukic P, Nielsen J. Electrostatics in proteins & protein-ligand complexes. Future Medicinal Chemistry. 2010;2(4):647-66. Kurochkina GI, Soboleva NO, Grachev MK, Vasyanina LK & Nifant EE. Monophosphorylation of 1,4:3,6-dianhydro-D-mannitol. Russian Chemical Bulletin. 2003; 52(4):1009-12. Kuszmann J & Medgyes G. Substituition of 1,4:3,6-dianhydro-D-mannitol derivatives by reactions with iodide. Carbohydrate Research. 1978; 64:135-42. Langer T. Pharmacophores in Drug Research. Molecular Informatics. 2010;29(6-7):470-5. Lawrence MG, Lai J & Clements JA. Kallikreins on Steroids: Structure , Function , and Hormonal Regulation of Prostate-Specific Antigen and the Extended Kallikrein Locus. Endocrine Reviews. 2010;31(4):407-46. Lennard-Jones J. Cohesion. The Proceedings Of The Physical Society. 1931;43(5):461-482. Liang J, Edelsbrunner H & Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Science. 1998;7:1884-97. Lindsay SM. Introduction to Nanoscience. Oxford: Oxford University Press; 2010. Lose F, Batra J, O’Mara T, Fahey P, Marquart L, Eeles R, Easton, Douglas F, Al Olama AA, Kote-Jarai Z, Guy M, Muir K, Lophatananon A, Rahman A, Neal DE, Hamdy FC, Donovan JL, Chambers S, Gardiner R, Aitken JF, Yaxley J, Alexander K, Clements J, Spurdle AB Kedda M-A. Common variation in Kallikrein genes KLK5, KLK6, KLK12, & KLK13 & risk of prostate cancer & tumor aggressiveness. Urologic Oncology. 2011;31(5):635-43. Lu S-H, Wu JW, Liu H-L, Zhao J-H, Liu K-T, Chuang C-K, Lin H-Y, Tsai W-B, Ho Y. The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, & molecular docking studies. Journal of Biomedical Science; 2011;18(1):1-13. Mallik B, Masunov A, Lazaridis T. Distance & exposure dependent effective dielectric function. Journal of Computational Chemistry [Internet]. 2002 [acesso em 18 jul. 2013];23(11):1090-9. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/12116395. Michael IP, Sotiropoulou G, Pampalakis G, Magklara A, Ghosh M, Wasney G, Diamandis EP. Biochemical & Enzymatic Characterization of Human Kallikrein 5 (hK5), a Novel Serine Protease Potentially Involved in Cancer Progression. 2005;280(15):14628-35. Muri EMF, Gomes M, Albuquerque MG, da Cunha EFF, de Alencastro RB, Williamson JS, Antunes OC. Pseudo-peptides derived from isomannide as potential inhibitors of serine proteases. Amino Acids. 2005;28(4):413-9. Muri EMF, Gomes M, Costa JS, Alencar FL, Sales A, Bastos ML, Hernandez-Valdes R, Albuquerque MG, da Cunha EFF, Alencastro RB, Williamson JS, Antunes OC. N- t-Boc-amino acid esters of isomannide. Potential inhibitors of serine proteases. Amino Acids. 2004;27(2):153-9. Nelson DL, Cox MM. Lehninger: Principles of Biochemistry. 5a ed. New York; 2008. Nielsen PE. Pseudo-peptides in Drug Discovery. Weinheim: Wiley-VCH; 2004. Patrick GL. An Introduction to Medicinal Chemistry. 4a ed. Oxford: Oxford University Press; 2009. Patsis C, Yiotakis I, Scorilas A. Diagnostic & prognostic significance of human kallikrein 11 (KLK11) mRNA expression levels in patients with laryngeal cancer. Clinical Biochemistry. The Canadian Society of Clinical Chemists. 2012;45(9):623-30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera - A visualization system for exploratory research & analysis. Journal of Computational Chemistry. 2004;25(3):1605-12. Ramani VC, Haun RS. The extracellular matrix protein fibronectin is a substrate for kallikrein 7. Biochemical & Biophysical Research Communications. 2008;369(4):1169-73. Rawlings ND, Barrett AJ. Evolutionary families of peptidases. The Biochemical Journal. 1993;290:205-18. Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids research. 2010;38:D227-33. Riegman P, Vlietstra R, Suurmeijer L, Cleutjens C & Trapman J. Characterization of the Human Kallikrein Locus. Genomics. 1992;14(1):6-11. Sainz I, Pixley R & Colman R. Fifty years of research on the plasma kallikrein-kinin system: From protein structure and function to cell biology and in-vivo pathophysiology. Thromb. Haemost. 2007; 98(1):77-83. Saxena P, Thompson P, d’Udekem Y, Konstantinov IE. Kallikrein-kinin system: a surgical perspective in post-aprotinin era. The Journal of Surgical Research. 2011;167(1):70-7. Schrauzer GN. Recent Advances in Nutritional Sciences Selenomethionine: A Review of its Nutritional Significance, Metabolism & Toxicity. The Journal of Nutrition. 2000;130:1553-6. Schrödinger L. MacroModel 9.7: Reference Manual. New York; 2009. Schrödinger L. Protein Preparation Guide. New York; 2011. Schrödinger L. Glide 5.8: User Manual. New York; 2012a. Schrödinger L. Maestro 9.3: User Manual. New York; 2012b. Still W, Tempczyk A, Hawley R & Hendrickson T. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 1990;112:6127-9. Talieri M, Alexopoulou DK, Scorilas A, Kypraios D, Arnogiannaki N, Devetzi M, Patsavela M, Xynopoulos D. Expression analysis and clinical evaluation of kallikrein-related peptidase 10 (KLK10) in colorectal cancer. Tumor Biology. 2011;32(4):737-44. Teixeira TSP, Freitas RF, Abrahão O, Devienne KF, de Souza LR, Blaber SI, Kondo MY, Juliano MA, Juliano L, Puzer L. Biological evaluation & docking studies of natural isocoumarins as inhibitors for human kallikrein 5 & 7. Bioorganic & Medicinal Chemistry Letters. 2011;21(20):6112-5. Termini L, Maciag PC, Soares FA, Nonogaki S, Pereira SMM, Alves VAF, Longatto-Filho A, Villa LL. Analysis of human kallikrein 7 expression as a potential biomarker in cervical neoplasia. International journal of cancer. International Journal of Cancer. 2010;127(2):485-90. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chemical Reviews. 2005;105(8):2999-3093. Watkins E & Jorgensen W. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. Journal of Physical Chemistry A. 2001;105(16):4118-25. Werle E & Fiedler F. Kallikreins. Biochesmistry. 1969;115(1840):1966-8. White NMA, Chow T, Diamandis M, Rofael Y, Faragalla H, Mankaruous M. Three dysregulated miRNAs control kallikrein 10 expression & cell proliferation in ovarian cancer. British Journal of Cancer. 2010;102(8):1244-53. Yousef GM & Diamandis EP. The New Human Tissue Kallikrein Gene Family: Structure, Function and Association to Disease. Endocrine reviews. 2001;22(2):184-204. Yousef GM, Chang A, Scorilas A, Diamandis EP. Genomic Organization of the Human Kallikrein Gene Family on Chromosome 19q13.3-q13.4. Biochemical and Biophysical Research Communications. 2000; 276(1):125-33. Zhang G, Musgrave CB. Comparison of DFT methods for molecular orbital eigenvalue calculations. Journal of Physical Chemistry A. 2007;111(8):1554-61.http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-06-26T20:05:32Zoai:bdtd.uftm.edu.br:tede/182Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:59.010078Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186166182772736