Characterization and manipulation of montmorillonite properties towards technological and environmental applications

Detalhes bibliográficos
Autor(a) principal: Melo, Vander Freitas
Data de Publicação: 2021
Outros Autores: Salata, Regiane, Abate, Gilberto, Azevedo, Antonio Carlos, Kummer, Larissa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/29907
Resumo: The combination of pillarization and charge neutralization with Li + can make montmorillonite an important support material for industry and decontamination of pollutants in soil and water. Montmorillonite characterization techniques were described in detail, and pillarization procedures were used, after Li + saturation, to modify and manipulate the chemical and mineralogical surface properties of this montmorillonite. Eight samples were produced: 1) natural montmorillonite (Chisholm Mine - MMT); 2) Li+ saturated montmorillonite (MMTLi); 3) polyethylene glycol (PEG) Al-pillared montmorillonite (AlPEG); 4) PEG Al-pillared montmorillonite saturated with Li (AlPEGLi); 5) Al-pillared montmorillonite with 14 h contact time (Al14h); 6) Al-pillared montmorillonite Al14h saturated with Li (Al14hLi); 7) Al-pillared montmorillonite with 0 h contact time (Al0h); and 8) Al-pillared montmorillonite Al0h saturated with Li (Al0hLi). The natural sample was identified as interlayered montmorillonite composed of chlorite layers or with a high degree of Al-hydroxy filling. Concerning the total permanent charges, 70 % occurred by isomorphic substitution of Al 3+ by Mg 2+ in octahedral layer and 30 % of Si 4+ by Al 3+ in tetrahedral layer. The pillarization method using the PEG produced a small number of stable pillars. The new milder pillarization method (Al0h) did not cause damage in the formation of Al-hydroxy. In this method, the resulting pillars were more homogeneous in size. Thereby, the Al0h Li method has been shown to produce a supporting material with a constant interlayer spacing, increased of the specific surface area (SSA), and drastic reduction of the cation exchange capacity (CEC) as compared to MMT. This modified mineral can be used in, for example, decontamination of polluted water with nonionic organic pollutants.
id UFV_914ebe04a10a277a2f6fd028249925af
oai_identifier_str oai:locus.ufv.br:123456789/29907
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Melo, Vander FreitasSalata, RegianeAbate, GilbertoAzevedo, Antonio CarlosKummer, Larissa2022-09-15T14:32:34Z2022-09-15T14:32:34Z2021-03-12Melo VF, Salata R, Abate G, Azevedo AC, Kummer L. Characterization and manipulation of montmorillonite properties towards technological and environmental applications. Rev Bras Cienc Solo. 2021;45:e0200149.1806-9657https://locus.ufv.br//handle/123456789/29907The combination of pillarization and charge neutralization with Li + can make montmorillonite an important support material for industry and decontamination of pollutants in soil and water. Montmorillonite characterization techniques were described in detail, and pillarization procedures were used, after Li + saturation, to modify and manipulate the chemical and mineralogical surface properties of this montmorillonite. Eight samples were produced: 1) natural montmorillonite (Chisholm Mine - MMT); 2) Li+ saturated montmorillonite (MMTLi); 3) polyethylene glycol (PEG) Al-pillared montmorillonite (AlPEG); 4) PEG Al-pillared montmorillonite saturated with Li (AlPEGLi); 5) Al-pillared montmorillonite with 14 h contact time (Al14h); 6) Al-pillared montmorillonite Al14h saturated with Li (Al14hLi); 7) Al-pillared montmorillonite with 0 h contact time (Al0h); and 8) Al-pillared montmorillonite Al0h saturated with Li (Al0hLi). The natural sample was identified as interlayered montmorillonite composed of chlorite layers or with a high degree of Al-hydroxy filling. Concerning the total permanent charges, 70 % occurred by isomorphic substitution of Al 3+ by Mg 2+ in octahedral layer and 30 % of Si 4+ by Al 3+ in tetrahedral layer. The pillarization method using the PEG produced a small number of stable pillars. The new milder pillarization method (Al0h) did not cause damage in the formation of Al-hydroxy. In this method, the resulting pillars were more homogeneous in size. Thereby, the Al0h Li method has been shown to produce a supporting material with a constant interlayer spacing, increased of the specific surface area (SSA), and drastic reduction of the cation exchange capacity (CEC) as compared to MMT. This modified mineral can be used in, for example, decontamination of polluted water with nonionic organic pollutants.engRevista Brasileira de Ciência do SoloVol. 45, 2021.Creative Commons Attribution Licenseinfo:eu-repo/semantics/openAccesspillarizationAl-hydroxy interlayerAl-pillared montmorillonitespecific surface areacation exchange capacityCharacterization and manipulation of montmorillonite properties towards technological and environmental applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1988883https://locus.ufv.br//bitstream/123456789/29907/1/artigo.pdfad5bf3f57c9f27940aed45b36ef90f41MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/29907/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/299072022-09-15 11:32:34.372oai:locus.ufv.br:123456789/29907Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-09-15T14:32:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Characterization and manipulation of montmorillonite properties towards technological and environmental applications
title Characterization and manipulation of montmorillonite properties towards technological and environmental applications
spellingShingle Characterization and manipulation of montmorillonite properties towards technological and environmental applications
Melo, Vander Freitas
pillarization
Al-hydroxy interlayer
Al-pillared montmorillonite
specific surface area
cation exchange capacity
title_short Characterization and manipulation of montmorillonite properties towards technological and environmental applications
title_full Characterization and manipulation of montmorillonite properties towards technological and environmental applications
title_fullStr Characterization and manipulation of montmorillonite properties towards technological and environmental applications
title_full_unstemmed Characterization and manipulation of montmorillonite properties towards technological and environmental applications
title_sort Characterization and manipulation of montmorillonite properties towards technological and environmental applications
author Melo, Vander Freitas
author_facet Melo, Vander Freitas
Salata, Regiane
Abate, Gilberto
Azevedo, Antonio Carlos
Kummer, Larissa
author_role author
author2 Salata, Regiane
Abate, Gilberto
Azevedo, Antonio Carlos
Kummer, Larissa
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Melo, Vander Freitas
Salata, Regiane
Abate, Gilberto
Azevedo, Antonio Carlos
Kummer, Larissa
dc.subject.eng.fl_str_mv pillarization
Al-hydroxy interlayer
Al-pillared montmorillonite
specific surface area
cation exchange capacity
topic pillarization
Al-hydroxy interlayer
Al-pillared montmorillonite
specific surface area
cation exchange capacity
description The combination of pillarization and charge neutralization with Li + can make montmorillonite an important support material for industry and decontamination of pollutants in soil and water. Montmorillonite characterization techniques were described in detail, and pillarization procedures were used, after Li + saturation, to modify and manipulate the chemical and mineralogical surface properties of this montmorillonite. Eight samples were produced: 1) natural montmorillonite (Chisholm Mine - MMT); 2) Li+ saturated montmorillonite (MMTLi); 3) polyethylene glycol (PEG) Al-pillared montmorillonite (AlPEG); 4) PEG Al-pillared montmorillonite saturated with Li (AlPEGLi); 5) Al-pillared montmorillonite with 14 h contact time (Al14h); 6) Al-pillared montmorillonite Al14h saturated with Li (Al14hLi); 7) Al-pillared montmorillonite with 0 h contact time (Al0h); and 8) Al-pillared montmorillonite Al0h saturated with Li (Al0hLi). The natural sample was identified as interlayered montmorillonite composed of chlorite layers or with a high degree of Al-hydroxy filling. Concerning the total permanent charges, 70 % occurred by isomorphic substitution of Al 3+ by Mg 2+ in octahedral layer and 30 % of Si 4+ by Al 3+ in tetrahedral layer. The pillarization method using the PEG produced a small number of stable pillars. The new milder pillarization method (Al0h) did not cause damage in the formation of Al-hydroxy. In this method, the resulting pillars were more homogeneous in size. Thereby, the Al0h Li method has been shown to produce a supporting material with a constant interlayer spacing, increased of the specific surface area (SSA), and drastic reduction of the cation exchange capacity (CEC) as compared to MMT. This modified mineral can be used in, for example, decontamination of polluted water with nonionic organic pollutants.
publishDate 2021
dc.date.issued.fl_str_mv 2021-03-12
dc.date.accessioned.fl_str_mv 2022-09-15T14:32:34Z
dc.date.available.fl_str_mv 2022-09-15T14:32:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv Melo VF, Salata R, Abate G, Azevedo AC, Kummer L. Characterization and manipulation of montmorillonite properties towards technological and environmental applications. Rev Bras Cienc Solo. 2021;45:e0200149.
dc.identifier.uri.fl_str_mv https://locus.ufv.br//handle/123456789/29907
dc.identifier.issn.none.fl_str_mv 1806-9657
identifier_str_mv Melo VF, Salata R, Abate G, Azevedo AC, Kummer L. Characterization and manipulation of montmorillonite properties towards technological and environmental applications. Rev Bras Cienc Solo. 2021;45:e0200149.
1806-9657
url https://locus.ufv.br//handle/123456789/29907
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Vol. 45, 2021.
dc.rights.driver.fl_str_mv Creative Commons Attribution License
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Creative Commons Attribution License
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Revista Brasileira de Ciência do Solo
publisher.none.fl_str_mv Revista Brasileira de Ciência do Solo
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/29907/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/29907/2/license.txt
bitstream.checksum.fl_str_mv ad5bf3f57c9f27940aed45b36ef90f41
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212855744200704