Characterization and manipulation of montmorillonite properties towards technological and environmental applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://locus.ufv.br//handle/123456789/29907 |
Resumo: | The combination of pillarization and charge neutralization with Li + can make montmorillonite an important support material for industry and decontamination of pollutants in soil and water. Montmorillonite characterization techniques were described in detail, and pillarization procedures were used, after Li + saturation, to modify and manipulate the chemical and mineralogical surface properties of this montmorillonite. Eight samples were produced: 1) natural montmorillonite (Chisholm Mine - MMT); 2) Li+ saturated montmorillonite (MMTLi); 3) polyethylene glycol (PEG) Al-pillared montmorillonite (AlPEG); 4) PEG Al-pillared montmorillonite saturated with Li (AlPEGLi); 5) Al-pillared montmorillonite with 14 h contact time (Al14h); 6) Al-pillared montmorillonite Al14h saturated with Li (Al14hLi); 7) Al-pillared montmorillonite with 0 h contact time (Al0h); and 8) Al-pillared montmorillonite Al0h saturated with Li (Al0hLi). The natural sample was identified as interlayered montmorillonite composed of chlorite layers or with a high degree of Al-hydroxy filling. Concerning the total permanent charges, 70 % occurred by isomorphic substitution of Al 3+ by Mg 2+ in octahedral layer and 30 % of Si 4+ by Al 3+ in tetrahedral layer. The pillarization method using the PEG produced a small number of stable pillars. The new milder pillarization method (Al0h) did not cause damage in the formation of Al-hydroxy. In this method, the resulting pillars were more homogeneous in size. Thereby, the Al0h Li method has been shown to produce a supporting material with a constant interlayer spacing, increased of the specific surface area (SSA), and drastic reduction of the cation exchange capacity (CEC) as compared to MMT. This modified mineral can be used in, for example, decontamination of polluted water with nonionic organic pollutants. |
id |
UFV_914ebe04a10a277a2f6fd028249925af |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/29907 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Melo, Vander FreitasSalata, RegianeAbate, GilbertoAzevedo, Antonio CarlosKummer, Larissa2022-09-15T14:32:34Z2022-09-15T14:32:34Z2021-03-12Melo VF, Salata R, Abate G, Azevedo AC, Kummer L. Characterization and manipulation of montmorillonite properties towards technological and environmental applications. Rev Bras Cienc Solo. 2021;45:e0200149.1806-9657https://locus.ufv.br//handle/123456789/29907The combination of pillarization and charge neutralization with Li + can make montmorillonite an important support material for industry and decontamination of pollutants in soil and water. Montmorillonite characterization techniques were described in detail, and pillarization procedures were used, after Li + saturation, to modify and manipulate the chemical and mineralogical surface properties of this montmorillonite. Eight samples were produced: 1) natural montmorillonite (Chisholm Mine - MMT); 2) Li+ saturated montmorillonite (MMTLi); 3) polyethylene glycol (PEG) Al-pillared montmorillonite (AlPEG); 4) PEG Al-pillared montmorillonite saturated with Li (AlPEGLi); 5) Al-pillared montmorillonite with 14 h contact time (Al14h); 6) Al-pillared montmorillonite Al14h saturated with Li (Al14hLi); 7) Al-pillared montmorillonite with 0 h contact time (Al0h); and 8) Al-pillared montmorillonite Al0h saturated with Li (Al0hLi). The natural sample was identified as interlayered montmorillonite composed of chlorite layers or with a high degree of Al-hydroxy filling. Concerning the total permanent charges, 70 % occurred by isomorphic substitution of Al 3+ by Mg 2+ in octahedral layer and 30 % of Si 4+ by Al 3+ in tetrahedral layer. The pillarization method using the PEG produced a small number of stable pillars. The new milder pillarization method (Al0h) did not cause damage in the formation of Al-hydroxy. In this method, the resulting pillars were more homogeneous in size. Thereby, the Al0h Li method has been shown to produce a supporting material with a constant interlayer spacing, increased of the specific surface area (SSA), and drastic reduction of the cation exchange capacity (CEC) as compared to MMT. This modified mineral can be used in, for example, decontamination of polluted water with nonionic organic pollutants.engRevista Brasileira de Ciência do SoloVol. 45, 2021.Creative Commons Attribution Licenseinfo:eu-repo/semantics/openAccesspillarizationAl-hydroxy interlayerAl-pillared montmorillonitespecific surface areacation exchange capacityCharacterization and manipulation of montmorillonite properties towards technological and environmental applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1988883https://locus.ufv.br//bitstream/123456789/29907/1/artigo.pdfad5bf3f57c9f27940aed45b36ef90f41MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/29907/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/299072022-09-15 11:32:34.372oai:locus.ufv.br:123456789/29907Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-09-15T14:32:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
title |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
spellingShingle |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications Melo, Vander Freitas pillarization Al-hydroxy interlayer Al-pillared montmorillonite specific surface area cation exchange capacity |
title_short |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
title_full |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
title_fullStr |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
title_full_unstemmed |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
title_sort |
Characterization and manipulation of montmorillonite properties towards technological and environmental applications |
author |
Melo, Vander Freitas |
author_facet |
Melo, Vander Freitas Salata, Regiane Abate, Gilberto Azevedo, Antonio Carlos Kummer, Larissa |
author_role |
author |
author2 |
Salata, Regiane Abate, Gilberto Azevedo, Antonio Carlos Kummer, Larissa |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Melo, Vander Freitas Salata, Regiane Abate, Gilberto Azevedo, Antonio Carlos Kummer, Larissa |
dc.subject.eng.fl_str_mv |
pillarization Al-hydroxy interlayer Al-pillared montmorillonite specific surface area cation exchange capacity |
topic |
pillarization Al-hydroxy interlayer Al-pillared montmorillonite specific surface area cation exchange capacity |
description |
The combination of pillarization and charge neutralization with Li + can make montmorillonite an important support material for industry and decontamination of pollutants in soil and water. Montmorillonite characterization techniques were described in detail, and pillarization procedures were used, after Li + saturation, to modify and manipulate the chemical and mineralogical surface properties of this montmorillonite. Eight samples were produced: 1) natural montmorillonite (Chisholm Mine - MMT); 2) Li+ saturated montmorillonite (MMTLi); 3) polyethylene glycol (PEG) Al-pillared montmorillonite (AlPEG); 4) PEG Al-pillared montmorillonite saturated with Li (AlPEGLi); 5) Al-pillared montmorillonite with 14 h contact time (Al14h); 6) Al-pillared montmorillonite Al14h saturated with Li (Al14hLi); 7) Al-pillared montmorillonite with 0 h contact time (Al0h); and 8) Al-pillared montmorillonite Al0h saturated with Li (Al0hLi). The natural sample was identified as interlayered montmorillonite composed of chlorite layers or with a high degree of Al-hydroxy filling. Concerning the total permanent charges, 70 % occurred by isomorphic substitution of Al 3+ by Mg 2+ in octahedral layer and 30 % of Si 4+ by Al 3+ in tetrahedral layer. The pillarization method using the PEG produced a small number of stable pillars. The new milder pillarization method (Al0h) did not cause damage in the formation of Al-hydroxy. In this method, the resulting pillars were more homogeneous in size. Thereby, the Al0h Li method has been shown to produce a supporting material with a constant interlayer spacing, increased of the specific surface area (SSA), and drastic reduction of the cation exchange capacity (CEC) as compared to MMT. This modified mineral can be used in, for example, decontamination of polluted water with nonionic organic pollutants. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-03-12 |
dc.date.accessioned.fl_str_mv |
2022-09-15T14:32:34Z |
dc.date.available.fl_str_mv |
2022-09-15T14:32:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Melo VF, Salata R, Abate G, Azevedo AC, Kummer L. Characterization and manipulation of montmorillonite properties towards technological and environmental applications. Rev Bras Cienc Solo. 2021;45:e0200149. |
dc.identifier.uri.fl_str_mv |
https://locus.ufv.br//handle/123456789/29907 |
dc.identifier.issn.none.fl_str_mv |
1806-9657 |
identifier_str_mv |
Melo VF, Salata R, Abate G, Azevedo AC, Kummer L. Characterization and manipulation of montmorillonite properties towards technological and environmental applications. Rev Bras Cienc Solo. 2021;45:e0200149. 1806-9657 |
url |
https://locus.ufv.br//handle/123456789/29907 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Vol. 45, 2021. |
dc.rights.driver.fl_str_mv |
Creative Commons Attribution License info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Creative Commons Attribution License |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/29907/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/29907/2/license.txt |
bitstream.checksum.fl_str_mv |
ad5bf3f57c9f27940aed45b36ef90f41 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212855744200704 |