Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/4030 |
Resumo: | In order to quantify the direct and indirect effect through path analysis using phenotypic and genotypic values of yield components - number of stalks per plot, average diameter of stalks and their average length - affecting tons of cane per hectare, data from two experiments of sugarcane were considered. Regarding the productivity of cane per hectare data from two different experiments were obtained from cane plants and ratoon canes, in the beginning of the selection program of sugarcane improvement in the state of Minas Gerais. The following characteristics were evaluated at plot level: the tons of cane per hectare (TCH), as the main variable, and its yield components, number of stalks (NS), mean diameter of stalks (DS) and average length of stalks (LS) as explicative variables. The coefficient of determination were high in all path analyses, which, in turn, indicates that the evaluated components explain, considerably, the variation in TCH. Through the analysis of the direct fenotypic and genotypic effects, NS was the variable that best correlated to TCH in both experiments and stages showing a possibility of obtaining significant gain through indirect selection to TCH by NS. The evaluation of the cause and effect relations among the production components of sugarcane helped to verify the variation across the experiments, which is probably related to the different origins of the families evaluated. In the trail analysis, the parameters are estimated from matrix correlations that may be ill-conditioned by the multicollinearity effect among the involved variables. Due to this fact, the data were evaluated by using ratoon canes obtained from the program of sugarcane improvement at the Federal University of Viçosa in order to compare the method based on ridge regression and the exclusion of variables for main components to estimate the path coefficients under the presence of multicollinearity. Ten plants per plot were used to carry out the analyses on explaining variables Brix (percentage soluble solids), Pol, pH (potential of Hydrogen), RS (reduction sugar), TRS (Total reduction sugar), Cu (copper), Al (aluminum), Mg (magnesium), Ca (Calcium), K (Potassium), aconitic acid, phenolic compounds and the main variable sugarcane juice color (ICUMSA color). The matrix containing correlation obtained from the data were submitted to different methods to have the multicollinearity diagnostic. Under severe multicollinearity, the methods based on ridge regression and in main components presented similar results in the estimation of the path coefficients, causing sensitive reduction in the magnitude of the variance inflation factor associated with the direct and indirect effects of the path analysis. Therefore, in this study, it was possible to identify the variables Al, K and phenolic compounds as the ones that explain the sugarcane juice color. However, the other characters must be taken into account due to their great correlation and low magnitude of the direct effect, making evident the necessity of simultaneous selections of characters, with emphasis on characters that have significant indirect effect. For purposes of improvement, the indirect selection for the ICUMSA color through index selection involving variables such as Brix, Pol, RS, TRS, pH, Cu, Al, Mg, Ca, K, phenolic compounds and aconitic acid is recommended. |
id |
UFV_95f53b510b8460c658ffab202c1ddf5f |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/4030 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Espósito, Deiciana Paganohttp://lattes.cnpq.br/7018279585926960Cruz, Cosme Damiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6Barbosa, Marcio Henrique Pereirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782585E6Peternelli, Luiz Alexandrehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7Carneiro, Antônio Policarpo Souzahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8Cecon, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T52015-03-26T13:32:09Z2011-07-012015-03-26T13:32:09Z2010-02-04ESPÓSITO, Deiciana Pagano. Path analysis for yield components and technological data of sugarcane. 2010. 113 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2010.http://locus.ufv.br/handle/123456789/4030In order to quantify the direct and indirect effect through path analysis using phenotypic and genotypic values of yield components - number of stalks per plot, average diameter of stalks and their average length - affecting tons of cane per hectare, data from two experiments of sugarcane were considered. Regarding the productivity of cane per hectare data from two different experiments were obtained from cane plants and ratoon canes, in the beginning of the selection program of sugarcane improvement in the state of Minas Gerais. The following characteristics were evaluated at plot level: the tons of cane per hectare (TCH), as the main variable, and its yield components, number of stalks (NS), mean diameter of stalks (DS) and average length of stalks (LS) as explicative variables. The coefficient of determination were high in all path analyses, which, in turn, indicates that the evaluated components explain, considerably, the variation in TCH. Through the analysis of the direct fenotypic and genotypic effects, NS was the variable that best correlated to TCH in both experiments and stages showing a possibility of obtaining significant gain through indirect selection to TCH by NS. The evaluation of the cause and effect relations among the production components of sugarcane helped to verify the variation across the experiments, which is probably related to the different origins of the families evaluated. In the trail analysis, the parameters are estimated from matrix correlations that may be ill-conditioned by the multicollinearity effect among the involved variables. Due to this fact, the data were evaluated by using ratoon canes obtained from the program of sugarcane improvement at the Federal University of Viçosa in order to compare the method based on ridge regression and the exclusion of variables for main components to estimate the path coefficients under the presence of multicollinearity. Ten plants per plot were used to carry out the analyses on explaining variables Brix (percentage soluble solids), Pol, pH (potential of Hydrogen), RS (reduction sugar), TRS (Total reduction sugar), Cu (copper), Al (aluminum), Mg (magnesium), Ca (Calcium), K (Potassium), aconitic acid, phenolic compounds and the main variable sugarcane juice color (ICUMSA color). The matrix containing correlation obtained from the data were submitted to different methods to have the multicollinearity diagnostic. Under severe multicollinearity, the methods based on ridge regression and in main components presented similar results in the estimation of the path coefficients, causing sensitive reduction in the magnitude of the variance inflation factor associated with the direct and indirect effects of the path analysis. Therefore, in this study, it was possible to identify the variables Al, K and phenolic compounds as the ones that explain the sugarcane juice color. However, the other characters must be taken into account due to their great correlation and low magnitude of the direct effect, making evident the necessity of simultaneous selections of characters, with emphasis on characters that have significant indirect effect. For purposes of improvement, the indirect selection for the ICUMSA color through index selection involving variables such as Brix, Pol, RS, TRS, pH, Cu, Al, Mg, Ca, K, phenolic compounds and aconitic acid is recommended.Com o objetivo de quantificar os efeitos diretos e indiretos, por meio da análise de trilha, utilizando valores fenotípicos e genotípicos dos componentes de produção - número de colmos por parcela, diâmetro médio de colmos e comprimento médio de colmos - sobre produtividade de colmos por hectare em cana-de-açúcar, foram obtidos dados de dois experimentos nas fases de cana-planta e cana-soca, em etapa inicial de seleção do programa de melhoramento da cana-de-açúcar no estado de Minas Gerais. Foram avaliados, ao nível de parcela, os caracteres tonelada de colmos por hectare (TCH), como variável principal, e seus componentes de produção, número de colmos (NC), diâmetro médio de colmos (DC) e comprimento médio de colmos (CC), como variáveis explicativas. Os coeficientes de determinação foram elevados em todas as análises de trilha, indicando que os componentes avaliados explicam grande parte da variação existente na produção de colmos. Pela análise dos efeitos diretos fenotípicos e genotípicos, NC foi a variável que melhor se correlacionou com TCH, em ambos os experimentos e estágios, demonstrando a possibilidade de obtenção de ganhos significativos por meio da seleção indireta para TCH via NC. A avaliação das relações de causa e efeito entre os componentes de produção em cana-de-açúcar possibilitou verificar que houve variação entre os experimentos, o que provavelmente se deve à origem diferenciada das famílias avaliadas. Como na técnica de análise de trilha os parâmetros são estimados a partir de matrizes de correlações que podem ser mal condicionadas por efeito de multicolinearidade entre as variáveis envolvidas, foram avaliados dados em cana-soca, obtidos do programa de melhoramento da cana-de-açúcar da Universidade Federal de Viçosa, para comparar o método baseado na regressão em crista e a exclusão de variáveis por componentes principais para a estimação dos coeficientes de trilha em presença de multicolinearidade. Foram amostradas dez plantas por parcela para realização das análises das variáveis explicativas Brix (teor de sólidos solúveis), Pol (teor de sacarose aparente), pH (indica o grau de acidez), AR (açúcares redutores), ART (açúcares totais recuperáveis), Cu (cobre), Al (alumínio), Mg (magnésio), Ca (cálcio), K (potássio), Ácido aconítico, Compostos fenólicos, e da variável principal Cor ICUMSA. A matriz de correlação obtida dos dados foi submetida a diferentes métodos para diagnóstico de multicolinearidade. Sob multicolinearidade severa, os métodos baseados na regressão em crista e em componentes principais apresentaram resultados semelhantes na estimação dos coeficientes de trilha, proporcionando sensível redução na magnitude dos fatores de inflação da variância associados aos efeitos diretos e indiretos da análise de trilha. Assim, foi possível identificar neste estudo, os caracteres alumínio (Al), potássio (K) e Compostos fenólicos como aqueles que melhor explicam a Cor do caldo. Contudo, os demais caracteres devem ser levados em consideração devido a elevada correlação existente e a baixa magnitude do efeito direto, evidenciando a necessidade de seleção simultânea de caracteres, com ênfase também nos caracteres cujos efeitos indiretos são significativos. Para fins de melhoramento, a seleção indireta para Cor do caldo, por meio de índice de seleção envolvendo as variáveis Brix, Pol, AR, ATR, pH, Cu, Al, Mg, Ca, K, Compostos fenólicos e Ácido aconítico é recomendável.application/pdfporUniversidade Federal de ViçosaMestrado em Estatística Aplicada e BiometriaUFVBREstatística Aplicada e BiometriaCorrelaçãoRegressãoSeleção indiretaAnálise multivariadaComponentes principaisCorrelationRegressionIndirect selectionMultivariate analysisPrincipal componentsCNPQ::CIENCIAS AGRARIASAnálise de trilha em dados de produção e tecnológicos da cana-de-açúcarPath analysis for yield components and technological data of sugarcaneinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf333830https://locus.ufv.br//bitstream/123456789/4030/1/texto%20completo.pdf07934f2235753acb1a82537822011e42MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain180992https://locus.ufv.br//bitstream/123456789/4030/2/texto%20completo.pdf.txt6e7de0ddb4e426e8585a04b8bbeb7958MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3592https://locus.ufv.br//bitstream/123456789/4030/3/texto%20completo.pdf.jpg28b5086930f8250bef3cf46c4847fc03MD53123456789/40302016-04-09 23:16:26.728oai:locus.ufv.br:123456789/4030Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:16:26LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
dc.title.alternative.eng.fl_str_mv |
Path analysis for yield components and technological data of sugarcane |
title |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
spellingShingle |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar Espósito, Deiciana Pagano Correlação Regressão Seleção indireta Análise multivariada Componentes principais Correlation Regression Indirect selection Multivariate analysis Principal components CNPQ::CIENCIAS AGRARIAS |
title_short |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
title_full |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
title_fullStr |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
title_full_unstemmed |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
title_sort |
Análise de trilha em dados de produção e tecnológicos da cana-de-açúcar |
author |
Espósito, Deiciana Pagano |
author_facet |
Espósito, Deiciana Pagano |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/7018279585926960 |
dc.contributor.author.fl_str_mv |
Espósito, Deiciana Pagano |
dc.contributor.advisor-co1.fl_str_mv |
Cruz, Cosme Damião |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6 |
dc.contributor.advisor-co2.fl_str_mv |
Barbosa, Marcio Henrique Pereira |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782585E6 |
dc.contributor.advisor1.fl_str_mv |
Peternelli, Luiz Alexandre |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7 |
dc.contributor.referee1.fl_str_mv |
Carneiro, Antônio Policarpo Souza |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8 |
dc.contributor.referee2.fl_str_mv |
Cecon, Paulo Roberto |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5 |
contributor_str_mv |
Cruz, Cosme Damião Barbosa, Marcio Henrique Pereira Peternelli, Luiz Alexandre Carneiro, Antônio Policarpo Souza Cecon, Paulo Roberto |
dc.subject.por.fl_str_mv |
Correlação Regressão Seleção indireta Análise multivariada Componentes principais |
topic |
Correlação Regressão Seleção indireta Análise multivariada Componentes principais Correlation Regression Indirect selection Multivariate analysis Principal components CNPQ::CIENCIAS AGRARIAS |
dc.subject.eng.fl_str_mv |
Correlation Regression Indirect selection Multivariate analysis Principal components |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS |
description |
In order to quantify the direct and indirect effect through path analysis using phenotypic and genotypic values of yield components - number of stalks per plot, average diameter of stalks and their average length - affecting tons of cane per hectare, data from two experiments of sugarcane were considered. Regarding the productivity of cane per hectare data from two different experiments were obtained from cane plants and ratoon canes, in the beginning of the selection program of sugarcane improvement in the state of Minas Gerais. The following characteristics were evaluated at plot level: the tons of cane per hectare (TCH), as the main variable, and its yield components, number of stalks (NS), mean diameter of stalks (DS) and average length of stalks (LS) as explicative variables. The coefficient of determination were high in all path analyses, which, in turn, indicates that the evaluated components explain, considerably, the variation in TCH. Through the analysis of the direct fenotypic and genotypic effects, NS was the variable that best correlated to TCH in both experiments and stages showing a possibility of obtaining significant gain through indirect selection to TCH by NS. The evaluation of the cause and effect relations among the production components of sugarcane helped to verify the variation across the experiments, which is probably related to the different origins of the families evaluated. In the trail analysis, the parameters are estimated from matrix correlations that may be ill-conditioned by the multicollinearity effect among the involved variables. Due to this fact, the data were evaluated by using ratoon canes obtained from the program of sugarcane improvement at the Federal University of Viçosa in order to compare the method based on ridge regression and the exclusion of variables for main components to estimate the path coefficients under the presence of multicollinearity. Ten plants per plot were used to carry out the analyses on explaining variables Brix (percentage soluble solids), Pol, pH (potential of Hydrogen), RS (reduction sugar), TRS (Total reduction sugar), Cu (copper), Al (aluminum), Mg (magnesium), Ca (Calcium), K (Potassium), aconitic acid, phenolic compounds and the main variable sugarcane juice color (ICUMSA color). The matrix containing correlation obtained from the data were submitted to different methods to have the multicollinearity diagnostic. Under severe multicollinearity, the methods based on ridge regression and in main components presented similar results in the estimation of the path coefficients, causing sensitive reduction in the magnitude of the variance inflation factor associated with the direct and indirect effects of the path analysis. Therefore, in this study, it was possible to identify the variables Al, K and phenolic compounds as the ones that explain the sugarcane juice color. However, the other characters must be taken into account due to their great correlation and low magnitude of the direct effect, making evident the necessity of simultaneous selections of characters, with emphasis on characters that have significant indirect effect. For purposes of improvement, the indirect selection for the ICUMSA color through index selection involving variables such as Brix, Pol, RS, TRS, pH, Cu, Al, Mg, Ca, K, phenolic compounds and aconitic acid is recommended. |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-02-04 |
dc.date.available.fl_str_mv |
2011-07-01 2015-03-26T13:32:09Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T13:32:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ESPÓSITO, Deiciana Pagano. Path analysis for yield components and technological data of sugarcane. 2010. 113 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2010. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/4030 |
identifier_str_mv |
ESPÓSITO, Deiciana Pagano. Path analysis for yield components and technological data of sugarcane. 2010. 113 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2010. |
url |
http://locus.ufv.br/handle/123456789/4030 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Mestrado em Estatística Aplicada e Biometria |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Estatística Aplicada e Biometria |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/4030/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/4030/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/4030/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
07934f2235753acb1a82537822011e42 6e7de0ddb4e426e8585a04b8bbeb7958 28b5086930f8250bef3cf46c4847fc03 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213013731049472 |