Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella

Detalhes bibliográficos
Autor(a) principal: Almeida, Felipe Alves de
Data de Publicação: 2018
Outros Autores: Vargas, Erika Lorena Giraldo, Carneiro, Deisy Guimarães, Pinto, Uelinton Manoel, Vanetti, Maria Cristina Dantas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.micpath.2018.05.014
http://www.locus.ufv.br/handle/123456789/21738
Resumo: Salmonella belongs to the Enterobacteriaceae family which is widely distributed in the environment due to its adaptive capacity to stress conditions. In addition, Salmonella is able to perform a type of cell-to-cell communication called quorum sensing, which leads to differential gene expression. The quorum sensing system mediated by AI-1, acyl homoserine lactones (AHLs), is incomplete in Salmonella because the luxI homolog gene, which encodes for AI-1 synthase, is missing in the genome. However, a homologue of LuxR, known as SdiA, is present and allows the detection of signaling molecules produced by other species of bacteria, leading to regulation of gene expression, mainly related to virulence and biofilm formation. Thus, in view of the importance of quorum sensing on the physiology regulation of microorganisms, the aim of the present study was to perform a virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs (NASIDs) for inhibition of quorum sensing by molecular docking and biofilm formation in Salmonella. In general, most plant compounds and all NSAIDs bound in, at least, one of the three modeled structures of SdiA proteins of Salmonella Enteritidis PT4 578. In addition, many tested compounds had higher binding affinities than the AHLs and the furanones which are inducers and inhibitors of quorum sensing, respectively. The Z-phytol and lonazolac molecules were good candidates for the in vitro inhibition tests of quorum sensing mediated by AI-1 and biofilm formation in Salmonella. Thus, this study directs future prospecting of plant extracts for inhibition of quorum sensing mechanism depending on AHL and biofilm formation. In addition, the use of inhibitors of quorum sensing and biofilm formation can be combined with antibiotics for better treatment efficacy, as well as the use of these compounds to design new drugs.
id UFV_f37ee9a550b77a5a88367ccc9fcdcd2a
oai_identifier_str oai:locus.ufv.br:123456789/21738
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Almeida, Felipe Alves deVargas, Erika Lorena GiraldoCarneiro, Deisy GuimarãesPinto, Uelinton ManoelVanetti, Maria Cristina Dantas2018-09-11T11:28:24Z2018-09-11T11:28:24Z2018-0808824010https://doi.org/10.1016/j.micpath.2018.05.014http://www.locus.ufv.br/handle/123456789/21738Salmonella belongs to the Enterobacteriaceae family which is widely distributed in the environment due to its adaptive capacity to stress conditions. In addition, Salmonella is able to perform a type of cell-to-cell communication called quorum sensing, which leads to differential gene expression. The quorum sensing system mediated by AI-1, acyl homoserine lactones (AHLs), is incomplete in Salmonella because the luxI homolog gene, which encodes for AI-1 synthase, is missing in the genome. However, a homologue of LuxR, known as SdiA, is present and allows the detection of signaling molecules produced by other species of bacteria, leading to regulation of gene expression, mainly related to virulence and biofilm formation. Thus, in view of the importance of quorum sensing on the physiology regulation of microorganisms, the aim of the present study was to perform a virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs (NASIDs) for inhibition of quorum sensing by molecular docking and biofilm formation in Salmonella. In general, most plant compounds and all NSAIDs bound in, at least, one of the three modeled structures of SdiA proteins of Salmonella Enteritidis PT4 578. In addition, many tested compounds had higher binding affinities than the AHLs and the furanones which are inducers and inhibitors of quorum sensing, respectively. The Z-phytol and lonazolac molecules were good candidates for the in vitro inhibition tests of quorum sensing mediated by AI-1 and biofilm formation in Salmonella. Thus, this study directs future prospecting of plant extracts for inhibition of quorum sensing mechanism depending on AHL and biofilm formation. In addition, the use of inhibitors of quorum sensing and biofilm formation can be combined with antibiotics for better treatment efficacy, as well as the use of these compounds to design new drugs.engMicrobial Pathogenesisv. 121, p. 369- 388, august 2018Elsevier Ltd.info:eu-repo/semantics/openAccessAnti-biofilmLonazolacQuorum quenchingSdiA proteinZ-phytolVirtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonellainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf4826904https://locus.ufv.br//bitstream/123456789/21738/1/artigo.pdfd747c592d137a1e18d0ff1f1047545c5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21738/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg6099https://locus.ufv.br//bitstream/123456789/21738/3/artigo.pdf.jpgb9f50e5ffa2c11b6555144536f883b3fMD53123456789/217382018-09-11 23:00:45.524oai:locus.ufv.br:123456789/21738Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-12T02:00:45LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
title Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
spellingShingle Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
Almeida, Felipe Alves de
Anti-biofilm
Lonazolac
Quorum quenching
SdiA protein
Z-phytol
title_short Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
title_full Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
title_fullStr Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
title_full_unstemmed Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
title_sort Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella
author Almeida, Felipe Alves de
author_facet Almeida, Felipe Alves de
Vargas, Erika Lorena Giraldo
Carneiro, Deisy Guimarães
Pinto, Uelinton Manoel
Vanetti, Maria Cristina Dantas
author_role author
author2 Vargas, Erika Lorena Giraldo
Carneiro, Deisy Guimarães
Pinto, Uelinton Manoel
Vanetti, Maria Cristina Dantas
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Almeida, Felipe Alves de
Vargas, Erika Lorena Giraldo
Carneiro, Deisy Guimarães
Pinto, Uelinton Manoel
Vanetti, Maria Cristina Dantas
dc.subject.pt-BR.fl_str_mv Anti-biofilm
Lonazolac
Quorum quenching
SdiA protein
Z-phytol
topic Anti-biofilm
Lonazolac
Quorum quenching
SdiA protein
Z-phytol
description Salmonella belongs to the Enterobacteriaceae family which is widely distributed in the environment due to its adaptive capacity to stress conditions. In addition, Salmonella is able to perform a type of cell-to-cell communication called quorum sensing, which leads to differential gene expression. The quorum sensing system mediated by AI-1, acyl homoserine lactones (AHLs), is incomplete in Salmonella because the luxI homolog gene, which encodes for AI-1 synthase, is missing in the genome. However, a homologue of LuxR, known as SdiA, is present and allows the detection of signaling molecules produced by other species of bacteria, leading to regulation of gene expression, mainly related to virulence and biofilm formation. Thus, in view of the importance of quorum sensing on the physiology regulation of microorganisms, the aim of the present study was to perform a virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs (NASIDs) for inhibition of quorum sensing by molecular docking and biofilm formation in Salmonella. In general, most plant compounds and all NSAIDs bound in, at least, one of the three modeled structures of SdiA proteins of Salmonella Enteritidis PT4 578. In addition, many tested compounds had higher binding affinities than the AHLs and the furanones which are inducers and inhibitors of quorum sensing, respectively. The Z-phytol and lonazolac molecules were good candidates for the in vitro inhibition tests of quorum sensing mediated by AI-1 and biofilm formation in Salmonella. Thus, this study directs future prospecting of plant extracts for inhibition of quorum sensing mechanism depending on AHL and biofilm formation. In addition, the use of inhibitors of quorum sensing and biofilm formation can be combined with antibiotics for better treatment efficacy, as well as the use of these compounds to design new drugs.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-09-11T11:28:24Z
dc.date.available.fl_str_mv 2018-09-11T11:28:24Z
dc.date.issued.fl_str_mv 2018-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.micpath.2018.05.014
http://www.locus.ufv.br/handle/123456789/21738
dc.identifier.issn.none.fl_str_mv 08824010
identifier_str_mv 08824010
url https://doi.org/10.1016/j.micpath.2018.05.014
http://www.locus.ufv.br/handle/123456789/21738
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 121, p. 369- 388, august 2018
dc.rights.driver.fl_str_mv Elsevier Ltd.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier Ltd.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Microbial Pathogenesis
publisher.none.fl_str_mv Microbial Pathogenesis
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21738/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21738/2/license.txt
https://locus.ufv.br//bitstream/123456789/21738/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv d747c592d137a1e18d0ff1f1047545c5
8a4605be74aa9ea9d79846c1fba20a33
b9f50e5ffa2c11b6555144536f883b3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213056132317184