A New Method for Automatic Vehicle License Plate Detection

Detalhes bibliográficos
Autor(a) principal: Corneto, G. L.
Data de Publicação: 2017
Outros Autores: Silva, F. A., Pereira, D. R., Almeida, L. L., Artero, A. O., Papa, J. P., De Albuquerque, V. H.C. [UNESP], Sapia, H. M.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TLA.2017.7827890
http://hdl.handle.net/11449/169410
Resumo: License plate recognition has been widely studied, and the advance in image capture technology helps enhance or create new methods to achieve this objective. In this work is presented a method for real time detection and segmentation of car license plates based on image analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 1 second. The proposed method was validated using two datasets (A and B). It was obtained over 92% detection success for dataset A, 88% in digit segmentation for datasets A and B, and 95% digits classification accuracy rate for dataset B.
id UNSP_09e6b4e9ff404722ac2605439bed79bb
oai_identifier_str oai:repositorio.unesp.br:11449/169410
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A New Method for Automatic Vehicle License Plate DetectionDigits segmentationImage ProcessingLicense plate detectionOCRVehicle License PlateLicense plate recognition has been widely studied, and the advance in image capture technology helps enhance or create new methods to achieve this objective. In this work is presented a method for real time detection and segmentation of car license plates based on image analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 1 second. The proposed method was validated using two datasets (A and B). It was obtained over 92% detection success for dataset A, 88% in digit segmentation for datasets A and B, and 95% digits classification accuracy rate for dataset B.Universidade Do Oeste Paulista (Unoeste) Presidente PrudenteUniversidade Estadual Paulista (Unesp)Universidade de Fortaleza (Unifor)Universidade Estadual Paulista (Unesp)Presidente PrudenteUniversidade Estadual Paulista (Unesp)Universidade de Fortaleza (Unifor)Corneto, G. L.Silva, F. A.Pereira, D. R.Almeida, L. L.Artero, A. O.Papa, J. P.De Albuquerque, V. H.C. [UNESP]Sapia, H. M.2018-12-11T16:45:46Z2018-12-11T16:45:46Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article75-80application/pdfhttp://dx.doi.org/10.1109/TLA.2017.7827890IEEE Latin America Transactions, v. 15, n. 1, p. 75-80, 2017.1548-0992http://hdl.handle.net/11449/16941010.1109/TLA.2017.78278902-s2.0-850109910782-s2.0-85010991078.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactions0,253info:eu-repo/semantics/openAccess2023-11-26T06:10:04Zoai:repositorio.unesp.br:11449/169410Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:45:15.100542Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A New Method for Automatic Vehicle License Plate Detection
title A New Method for Automatic Vehicle License Plate Detection
spellingShingle A New Method for Automatic Vehicle License Plate Detection
Corneto, G. L.
Digits segmentation
Image Processing
License plate detection
OCR
Vehicle License Plate
title_short A New Method for Automatic Vehicle License Plate Detection
title_full A New Method for Automatic Vehicle License Plate Detection
title_fullStr A New Method for Automatic Vehicle License Plate Detection
title_full_unstemmed A New Method for Automatic Vehicle License Plate Detection
title_sort A New Method for Automatic Vehicle License Plate Detection
author Corneto, G. L.
author_facet Corneto, G. L.
Silva, F. A.
Pereira, D. R.
Almeida, L. L.
Artero, A. O.
Papa, J. P.
De Albuquerque, V. H.C. [UNESP]
Sapia, H. M.
author_role author
author2 Silva, F. A.
Pereira, D. R.
Almeida, L. L.
Artero, A. O.
Papa, J. P.
De Albuquerque, V. H.C. [UNESP]
Sapia, H. M.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Presidente Prudente
Universidade Estadual Paulista (Unesp)
Universidade de Fortaleza (Unifor)
dc.contributor.author.fl_str_mv Corneto, G. L.
Silva, F. A.
Pereira, D. R.
Almeida, L. L.
Artero, A. O.
Papa, J. P.
De Albuquerque, V. H.C. [UNESP]
Sapia, H. M.
dc.subject.por.fl_str_mv Digits segmentation
Image Processing
License plate detection
OCR
Vehicle License Plate
topic Digits segmentation
Image Processing
License plate detection
OCR
Vehicle License Plate
description License plate recognition has been widely studied, and the advance in image capture technology helps enhance or create new methods to achieve this objective. In this work is presented a method for real time detection and segmentation of car license plates based on image analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 1 second. The proposed method was validated using two datasets (A and B). It was obtained over 92% detection success for dataset A, 88% in digit segmentation for datasets A and B, and 95% digits classification accuracy rate for dataset B.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-12-11T16:45:46Z
2018-12-11T16:45:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TLA.2017.7827890
IEEE Latin America Transactions, v. 15, n. 1, p. 75-80, 2017.
1548-0992
http://hdl.handle.net/11449/169410
10.1109/TLA.2017.7827890
2-s2.0-85010991078
2-s2.0-85010991078.pdf
url http://dx.doi.org/10.1109/TLA.2017.7827890
http://hdl.handle.net/11449/169410
identifier_str_mv IEEE Latin America Transactions, v. 15, n. 1, p. 75-80, 2017.
1548-0992
10.1109/TLA.2017.7827890
2-s2.0-85010991078
2-s2.0-85010991078.pdf
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv IEEE Latin America Transactions
0,253
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 75-80
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128974409170944