A New Method for Automatic Vehicle License Plate Detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2017.7827890 http://hdl.handle.net/11449/169410 |
Resumo: | License plate recognition has been widely studied, and the advance in image capture technology helps enhance or create new methods to achieve this objective. In this work is presented a method for real time detection and segmentation of car license plates based on image analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 1 second. The proposed method was validated using two datasets (A and B). It was obtained over 92% detection success for dataset A, 88% in digit segmentation for datasets A and B, and 95% digits classification accuracy rate for dataset B. |
id |
UNSP_09e6b4e9ff404722ac2605439bed79bb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/169410 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A New Method for Automatic Vehicle License Plate DetectionDigits segmentationImage ProcessingLicense plate detectionOCRVehicle License PlateLicense plate recognition has been widely studied, and the advance in image capture technology helps enhance or create new methods to achieve this objective. In this work is presented a method for real time detection and segmentation of car license plates based on image analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 1 second. The proposed method was validated using two datasets (A and B). It was obtained over 92% detection success for dataset A, 88% in digit segmentation for datasets A and B, and 95% digits classification accuracy rate for dataset B.Universidade Do Oeste Paulista (Unoeste) Presidente PrudenteUniversidade Estadual Paulista (Unesp)Universidade de Fortaleza (Unifor)Universidade Estadual Paulista (Unesp)Presidente PrudenteUniversidade Estadual Paulista (Unesp)Universidade de Fortaleza (Unifor)Corneto, G. L.Silva, F. A.Pereira, D. R.Almeida, L. L.Artero, A. O.Papa, J. P.De Albuquerque, V. H.C. [UNESP]Sapia, H. M.2018-12-11T16:45:46Z2018-12-11T16:45:46Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article75-80application/pdfhttp://dx.doi.org/10.1109/TLA.2017.7827890IEEE Latin America Transactions, v. 15, n. 1, p. 75-80, 2017.1548-0992http://hdl.handle.net/11449/16941010.1109/TLA.2017.78278902-s2.0-850109910782-s2.0-85010991078.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactions0,253info:eu-repo/semantics/openAccess2023-11-26T06:10:04Zoai:repositorio.unesp.br:11449/169410Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:45:15.100542Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A New Method for Automatic Vehicle License Plate Detection |
title |
A New Method for Automatic Vehicle License Plate Detection |
spellingShingle |
A New Method for Automatic Vehicle License Plate Detection Corneto, G. L. Digits segmentation Image Processing License plate detection OCR Vehicle License Plate |
title_short |
A New Method for Automatic Vehicle License Plate Detection |
title_full |
A New Method for Automatic Vehicle License Plate Detection |
title_fullStr |
A New Method for Automatic Vehicle License Plate Detection |
title_full_unstemmed |
A New Method for Automatic Vehicle License Plate Detection |
title_sort |
A New Method for Automatic Vehicle License Plate Detection |
author |
Corneto, G. L. |
author_facet |
Corneto, G. L. Silva, F. A. Pereira, D. R. Almeida, L. L. Artero, A. O. Papa, J. P. De Albuquerque, V. H.C. [UNESP] Sapia, H. M. |
author_role |
author |
author2 |
Silva, F. A. Pereira, D. R. Almeida, L. L. Artero, A. O. Papa, J. P. De Albuquerque, V. H.C. [UNESP] Sapia, H. M. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Presidente Prudente Universidade Estadual Paulista (Unesp) Universidade de Fortaleza (Unifor) |
dc.contributor.author.fl_str_mv |
Corneto, G. L. Silva, F. A. Pereira, D. R. Almeida, L. L. Artero, A. O. Papa, J. P. De Albuquerque, V. H.C. [UNESP] Sapia, H. M. |
dc.subject.por.fl_str_mv |
Digits segmentation Image Processing License plate detection OCR Vehicle License Plate |
topic |
Digits segmentation Image Processing License plate detection OCR Vehicle License Plate |
description |
License plate recognition has been widely studied, and the advance in image capture technology helps enhance or create new methods to achieve this objective. In this work is presented a method for real time detection and segmentation of car license plates based on image analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 1 second. The proposed method was validated using two datasets (A and B). It was obtained over 92% detection success for dataset A, 88% in digit segmentation for datasets A and B, and 95% digits classification accuracy rate for dataset B. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-12-11T16:45:46Z 2018-12-11T16:45:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2017.7827890 IEEE Latin America Transactions, v. 15, n. 1, p. 75-80, 2017. 1548-0992 http://hdl.handle.net/11449/169410 10.1109/TLA.2017.7827890 2-s2.0-85010991078 2-s2.0-85010991078.pdf |
url |
http://dx.doi.org/10.1109/TLA.2017.7827890 http://hdl.handle.net/11449/169410 |
identifier_str_mv |
IEEE Latin America Transactions, v. 15, n. 1, p. 75-80, 2017. 1548-0992 10.1109/TLA.2017.7827890 2-s2.0-85010991078 2-s2.0-85010991078.pdf |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
IEEE Latin America Transactions 0,253 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
75-80 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128974409170944 |