Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting

Detalhes bibliográficos
Autor(a) principal: Zambrano-Asanza, S. [UNESP]
Data de Publicação: 2021
Outros Autores: Cando, Diego J., Chuqui, Freddy H., Sanango, Juan, Franco, John F. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.9543010
http://hdl.handle.net/11449/222702
Resumo: Planning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method.
id UNSP_25f1f9a2f95b92921db7a72edb03caf6
oai_identifier_str oai:repositorio.unesp.br:11449/222702
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecastingClusteringDistribution planningGraph partitioningMicrogridsMinimal spanning treeSpatial load forecastingPlanning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method.Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP Department of Electrical Engineering, SPUniversity of Cuenca School of Electrical EngineeringUniversity of Cuenca Electronics and Telecommunications Department of Electrical EngineeringUniversidade Estadual Paulista Júlio de Mesquita Filho - UNESP Department of Electrical Engineering, SPUniversidade Estadual Paulista (UNESP)School of Electrical EngineeringElectronics and TelecommunicationsZambrano-Asanza, S. [UNESP]Cando, Diego J.Chuqui, Freddy H.Sanango, JuanFranco, John F. [UNESP]2022-04-28T19:46:19Z2022-04-28T19:46:19Z2021-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.95430102021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021.http://hdl.handle.net/11449/22270210.1109/ISGTLatinAmerica52371.2021.95430102-s2.0-85117610692Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021info:eu-repo/semantics/openAccess2022-04-28T19:46:20Zoai:repositorio.unesp.br:11449/222702Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:43:48.916120Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
title Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
spellingShingle Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
Zambrano-Asanza, S. [UNESP]
Clustering
Distribution planning
Graph partitioning
Microgrids
Minimal spanning tree
Spatial load forecasting
title_short Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
title_full Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
title_fullStr Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
title_full_unstemmed Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
title_sort Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
author Zambrano-Asanza, S. [UNESP]
author_facet Zambrano-Asanza, S. [UNESP]
Cando, Diego J.
Chuqui, Freddy H.
Sanango, Juan
Franco, John F. [UNESP]
author_role author
author2 Cando, Diego J.
Chuqui, Freddy H.
Sanango, Juan
Franco, John F. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
School of Electrical Engineering
Electronics and Telecommunications
dc.contributor.author.fl_str_mv Zambrano-Asanza, S. [UNESP]
Cando, Diego J.
Chuqui, Freddy H.
Sanango, Juan
Franco, John F. [UNESP]
dc.subject.por.fl_str_mv Clustering
Distribution planning
Graph partitioning
Microgrids
Minimal spanning tree
Spatial load forecasting
topic Clustering
Distribution planning
Graph partitioning
Microgrids
Minimal spanning tree
Spatial load forecasting
description Planning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-15
2022-04-28T19:46:19Z
2022-04-28T19:46:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.9543010
2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021.
http://hdl.handle.net/11449/222702
10.1109/ISGTLatinAmerica52371.2021.9543010
2-s2.0-85117610692
url http://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.9543010
http://hdl.handle.net/11449/222702
identifier_str_mv 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021.
10.1109/ISGTLatinAmerica52371.2021.9543010
2-s2.0-85117610692
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129455479062528