Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008 http://hdl.handle.net/11449/21751 |
Resumo: | This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results. |
id |
UNSP_276c2ec82264568847ef39cc5f5f5c21 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/21751 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parametersImage processingNoise removaledge detectiondiffusion equationThis work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.UFU FACOMUNESP IBILCE DCCEFATECUNESP IBILCE DCCESociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Federal de Uberlândia (UFU)Universidade Estadual Paulista (Unesp)Faculdade de Tecnologia do Estado de São Paulo (FATEC)Barcelos, Célia A.Z.Boaventura, Maurílio [UNESP]Silva Jr., Evanildo C.2014-05-20T14:01:38Z2014-05-20T14:01:38Z2005-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article131-150application/pdfhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005.1807-0302http://hdl.handle.net/11449/21751S1807-03022005000100008S1807-03022005000100008.pdf6958497786939585SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematicsinfo:eu-repo/semantics/openAccess2023-11-05T06:09:25Zoai:repositorio.unesp.br:11449/21751Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:58:49.595713Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
title |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
spellingShingle |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters Barcelos, Célia A.Z. Image processing Noise removal edge detection diffusion equation |
title_short |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
title_full |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
title_fullStr |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
title_full_unstemmed |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
title_sort |
Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters |
author |
Barcelos, Célia A.Z. |
author_facet |
Barcelos, Célia A.Z. Boaventura, Maurílio [UNESP] Silva Jr., Evanildo C. |
author_role |
author |
author2 |
Boaventura, Maurílio [UNESP] Silva Jr., Evanildo C. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Uberlândia (UFU) Universidade Estadual Paulista (Unesp) Faculdade de Tecnologia do Estado de São Paulo (FATEC) |
dc.contributor.author.fl_str_mv |
Barcelos, Célia A.Z. Boaventura, Maurílio [UNESP] Silva Jr., Evanildo C. |
dc.subject.por.fl_str_mv |
Image processing Noise removal edge detection diffusion equation |
topic |
Image processing Noise removal edge detection diffusion equation |
description |
This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04-01 2014-05-20T14:01:38Z 2014-05-20T14:01:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008 Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005. 1807-0302 http://hdl.handle.net/11449/21751 S1807-03022005000100008 S1807-03022005000100008.pdf 6958497786939585 |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008 http://hdl.handle.net/11449/21751 |
identifier_str_mv |
Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005. 1807-0302 S1807-03022005000100008 S1807-03022005000100008.pdf 6958497786939585 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational & Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
131-150 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128728428969984 |