Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters

Detalhes bibliográficos
Autor(a) principal: Barcelos, Célia A.Z.
Data de Publicação: 2005
Outros Autores: Boaventura, Maurílio [UNESP], Silva Jr., Evanildo C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008
http://hdl.handle.net/11449/21751
Resumo: This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.
id UNSP_276c2ec82264568847ef39cc5f5f5c21
oai_identifier_str oai:repositorio.unesp.br:11449/21751
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Edge detection and noise removal by use of a partial differential equation with automatic selection of parametersImage processingNoise removaledge detectiondiffusion equationThis work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.UFU FACOMUNESP IBILCE DCCEFATECUNESP IBILCE DCCESociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Federal de Uberlândia (UFU)Universidade Estadual Paulista (Unesp)Faculdade de Tecnologia do Estado de São Paulo (FATEC)Barcelos, Célia A.Z.Boaventura, Maurílio [UNESP]Silva Jr., Evanildo C.2014-05-20T14:01:38Z2014-05-20T14:01:38Z2005-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article131-150application/pdfhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005.1807-0302http://hdl.handle.net/11449/21751S1807-03022005000100008S1807-03022005000100008.pdf6958497786939585SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematicsinfo:eu-repo/semantics/openAccess2023-11-05T06:09:25Zoai:repositorio.unesp.br:11449/21751Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:58:49.595713Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
title Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
spellingShingle Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
Barcelos, Célia A.Z.
Image processing
Noise removal
edge detection
diffusion equation
title_short Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
title_full Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
title_fullStr Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
title_full_unstemmed Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
title_sort Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters
author Barcelos, Célia A.Z.
author_facet Barcelos, Célia A.Z.
Boaventura, Maurílio [UNESP]
Silva Jr., Evanildo C.
author_role author
author2 Boaventura, Maurílio [UNESP]
Silva Jr., Evanildo C.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de Uberlândia (UFU)
Universidade Estadual Paulista (Unesp)
Faculdade de Tecnologia do Estado de São Paulo (FATEC)
dc.contributor.author.fl_str_mv Barcelos, Célia A.Z.
Boaventura, Maurílio [UNESP]
Silva Jr., Evanildo C.
dc.subject.por.fl_str_mv Image processing
Noise removal
edge detection
diffusion equation
topic Image processing
Noise removal
edge detection
diffusion equation
description This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.
publishDate 2005
dc.date.none.fl_str_mv 2005-04-01
2014-05-20T14:01:38Z
2014-05-20T14:01:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008
Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005.
1807-0302
http://hdl.handle.net/11449/21751
S1807-03022005000100008
S1807-03022005000100008.pdf
6958497786939585
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008
http://hdl.handle.net/11449/21751
identifier_str_mv Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005.
1807-0302
S1807-03022005000100008
S1807-03022005000100008.pdf
6958497786939585
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational & Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 131-150
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128728428969984