Constraints on the functional trait space of aquatic invertebrates in bromeliads
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1111/1365-2435.13141 http://hdl.handle.net/11449/221175 |
Resumo: | Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article. |
id |
UNSP_40af66140316f75eda319e2afbca28c8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/221175 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Constraints on the functional trait space of aquatic invertebrates in bromeliadsaquatic invertebratesecological strategiesfunctional diversityfunctional trait spaceniche hypervolumeFunctional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article.Carnegie Trust for the Universities of ScotlandU.S. Department of AgricultureConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)LabexNational Science FoundationRoyal Society of EdinburghECOLAB CNRS Université de ToulouseDepartment of Ecology and Graduate Program in Ecology Universidade Federal do Rio Grande do SulDepartment of Zoology & Biodiversity Research Centre University of British ColumbiaLaboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of CampinasCentre for the Synthesis and Analysis of Biodiversity (CESAB-FRB)Facultad de Ciencias Agrarias Instituto de Investigaciones en Ciencias Agrarias Universidad Nacional de RosarioLaboratoire Microorganismes Génome et Environnement Université Clermont AuvergneAMAP IRD CIRAD CNRS INRA Université de MontpellierECOFOG Campus AgronomiqueDepartment of Biological Sciences Andes UniversityDepartment of Forest and Conservation Sciences University of British ColumbiaSchool of Biological and Chemical Sciences Queen Mary University of LondonDepartment of Botany Biosciences Institute University of São PauloDepartamento de Ecologia Instituto de Biologia Universidade Federal do Rio de JaneiroPrograma de Pós-Graduação em Ecologia Universidade Federal do Rio de JaneiroLuquillo LTER Institute for Tropical Ecosystem Studies University of Puerto RicoLaboratoire Interdisciplinaire des Environnements Continentaux CNRS Université de LorraineDepartment of Ecology and Evolutionary Biology University of TorontoBerlin-Brandenburg Institute of Advanced Biodiversity ResearchDepartment of Biosciences University of SalzburgInstitut Pasteur de la Guyane Unité d'Entomologie MédicaleDepartment of Zoology and Botany University of São Paulo StateAquatic and Terrestrial Ecology Royal Belgian Institute of Natural SciencesFacultad de Ciencias Agrarias Universidad Nacional de RosarioU.S. Department of Agriculture: 01-1G11120101-001CNPq: 307689/2014-0CNPq: 401345/2014-9Labex: ANR-10-LABX-25-01National Science Foundation: DEB-0218039National Science Foundation: DEB-0620910Université de ToulouseUniversidade Federal do Rio Grande do SulUniversity of British ColumbiaUniversidade Estadual de Campinas (UNICAMP)Centre for the Synthesis and Analysis of Biodiversity (CESAB-FRB)Universidad Nacional de RosarioUniversité Clermont AuvergneUniversité de MontpellierECOFOGAndes UniversityQueen Mary University of LondonUniversidade de São Paulo (USP)Universidade Federal do Rio de Janeiro (UFRJ)University of Puerto RicoUniversité de LorraineUniversity of TorontoBerlin-Brandenburg Institute of Advanced Biodiversity ResearchUniversity of SalzburgUnité d'Entomologie MédicaleRoyal Belgian Institute of Natural SciencesCéréghino, RégisPillar, Valério D.Srivastava, Diane S.de Omena, Paula M.MacDonald, A. Andrew M.Barberis, Ignacio M.Corbara, BrunoGuzman, Laura M.Leroy, CélineOspina Bautista, FabiolaRomero, Gustavo Q.Trzcinski, M. KurtisKratina, PavelDebastiani, Vanderlei J.Gonçalves, Ana Z.Marino, Nicholas A. C.Farjalla, Vinicius F.Richardson, Barbara A.Richardson, Michael J.Dézerald, OlivierGilbert, BenjaminPetermann, JanaTalaga, StanislasPiccoli, Gustavo C. O.Jocqué, MerlijnMontero, Guillermo2022-04-28T19:26:17Z2022-04-28T19:26:17Z2018-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2435-2447http://dx.doi.org/10.1111/1365-2435.13141Functional Ecology, v. 32, n. 10, p. 2435-2447, 2018.1365-24350269-8463http://hdl.handle.net/11449/22117510.1111/1365-2435.131412-s2.0-85054310408Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFunctional Ecologyinfo:eu-repo/semantics/openAccess2022-04-28T19:26:17Zoai:repositorio.unesp.br:11449/221175Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:05:59.442966Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
title |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
spellingShingle |
Constraints on the functional trait space of aquatic invertebrates in bromeliads Céréghino, Régis aquatic invertebrates ecological strategies functional diversity functional trait space niche hypervolume |
title_short |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
title_full |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
title_fullStr |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
title_full_unstemmed |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
title_sort |
Constraints on the functional trait space of aquatic invertebrates in bromeliads |
author |
Céréghino, Régis |
author_facet |
Céréghino, Régis Pillar, Valério D. Srivastava, Diane S. de Omena, Paula M. MacDonald, A. Andrew M. Barberis, Ignacio M. Corbara, Bruno Guzman, Laura M. Leroy, Céline Ospina Bautista, Fabiola Romero, Gustavo Q. Trzcinski, M. Kurtis Kratina, Pavel Debastiani, Vanderlei J. Gonçalves, Ana Z. Marino, Nicholas A. C. Farjalla, Vinicius F. Richardson, Barbara A. Richardson, Michael J. Dézerald, Olivier Gilbert, Benjamin Petermann, Jana Talaga, Stanislas Piccoli, Gustavo C. O. Jocqué, Merlijn Montero, Guillermo |
author_role |
author |
author2 |
Pillar, Valério D. Srivastava, Diane S. de Omena, Paula M. MacDonald, A. Andrew M. Barberis, Ignacio M. Corbara, Bruno Guzman, Laura M. Leroy, Céline Ospina Bautista, Fabiola Romero, Gustavo Q. Trzcinski, M. Kurtis Kratina, Pavel Debastiani, Vanderlei J. Gonçalves, Ana Z. Marino, Nicholas A. C. Farjalla, Vinicius F. Richardson, Barbara A. Richardson, Michael J. Dézerald, Olivier Gilbert, Benjamin Petermann, Jana Talaga, Stanislas Piccoli, Gustavo C. O. Jocqué, Merlijn Montero, Guillermo |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Université de Toulouse Universidade Federal do Rio Grande do Sul University of British Columbia Universidade Estadual de Campinas (UNICAMP) Centre for the Synthesis and Analysis of Biodiversity (CESAB-FRB) Universidad Nacional de Rosario Université Clermont Auvergne Université de Montpellier ECOFOG Andes University Queen Mary University of London Universidade de São Paulo (USP) Universidade Federal do Rio de Janeiro (UFRJ) University of Puerto Rico Université de Lorraine University of Toronto Berlin-Brandenburg Institute of Advanced Biodiversity Research University of Salzburg Unité d'Entomologie Médicale Royal Belgian Institute of Natural Sciences |
dc.contributor.author.fl_str_mv |
Céréghino, Régis Pillar, Valério D. Srivastava, Diane S. de Omena, Paula M. MacDonald, A. Andrew M. Barberis, Ignacio M. Corbara, Bruno Guzman, Laura M. Leroy, Céline Ospina Bautista, Fabiola Romero, Gustavo Q. Trzcinski, M. Kurtis Kratina, Pavel Debastiani, Vanderlei J. Gonçalves, Ana Z. Marino, Nicholas A. C. Farjalla, Vinicius F. Richardson, Barbara A. Richardson, Michael J. Dézerald, Olivier Gilbert, Benjamin Petermann, Jana Talaga, Stanislas Piccoli, Gustavo C. O. Jocqué, Merlijn Montero, Guillermo |
dc.subject.por.fl_str_mv |
aquatic invertebrates ecological strategies functional diversity functional trait space niche hypervolume |
topic |
aquatic invertebrates ecological strategies functional diversity functional trait space niche hypervolume |
description |
Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-01 2022-04-28T19:26:17Z 2022-04-28T19:26:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1111/1365-2435.13141 Functional Ecology, v. 32, n. 10, p. 2435-2447, 2018. 1365-2435 0269-8463 http://hdl.handle.net/11449/221175 10.1111/1365-2435.13141 2-s2.0-85054310408 |
url |
http://dx.doi.org/10.1111/1365-2435.13141 http://hdl.handle.net/11449/221175 |
identifier_str_mv |
Functional Ecology, v. 32, n. 10, p. 2435-2447, 2018. 1365-2435 0269-8463 10.1111/1365-2435.13141 2-s2.0-85054310408 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Functional Ecology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2435-2447 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129582641971200 |