Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios

Detalhes bibliográficos
Autor(a) principal: Abramo, L. R.
Data de Publicação: 2009
Outros Autores: Batista, R. C., Liberato, L. [UNESP], Rosenfeld, R. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevD.79.023516
http://hdl.handle.net/11449/225416
Resumo: The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations. © 2009 The American Physical Society.
id UNSP_57b5cab7732580e9094cf4c02b14617f
oai_identifier_str oai:repositorio.unesp.br:11449/225416
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenariosThe abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations. © 2009 The American Physical Society.Instituto de Física Universidade de São Paulo, CP 66318, 05315-970, São PauloInstituto de Física Teórica Universidade Estadual Paulista, R. Pamplona 145, 01405-900, São PauloInstituto de Física Teórica Universidade Estadual Paulista, R. Pamplona 145, 01405-900, São PauloUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Abramo, L. R.Batista, R. C.Liberato, L. [UNESP]Rosenfeld, R. [UNESP]2022-04-28T20:48:30Z2022-04-28T20:48:30Z2009-01-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevD.79.023516Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 79, n. 2, 2009.1550-79981550-2368http://hdl.handle.net/11449/22541610.1103/PhysRevD.79.0235162-s2.0-60349114464Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review D - Particles, Fields, Gravitation and Cosmologyinfo:eu-repo/semantics/openAccess2022-04-28T20:48:30Zoai:repositorio.unesp.br:11449/225416Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:40:05.310716Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
title Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
spellingShingle Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
Abramo, L. R.
title_short Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
title_full Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
title_fullStr Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
title_full_unstemmed Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
title_sort Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios
author Abramo, L. R.
author_facet Abramo, L. R.
Batista, R. C.
Liberato, L. [UNESP]
Rosenfeld, R. [UNESP]
author_role author
author2 Batista, R. C.
Liberato, L. [UNESP]
Rosenfeld, R. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Abramo, L. R.
Batista, R. C.
Liberato, L. [UNESP]
Rosenfeld, R. [UNESP]
description The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations. © 2009 The American Physical Society.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-05
2022-04-28T20:48:30Z
2022-04-28T20:48:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevD.79.023516
Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 79, n. 2, 2009.
1550-7998
1550-2368
http://hdl.handle.net/11449/225416
10.1103/PhysRevD.79.023516
2-s2.0-60349114464
url http://dx.doi.org/10.1103/PhysRevD.79.023516
http://hdl.handle.net/11449/225416
identifier_str_mv Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 79, n. 2, 2009.
1550-7998
1550-2368
10.1103/PhysRevD.79.023516
2-s2.0-60349114464
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review D - Particles, Fields, Gravitation and Cosmology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128262831865856