Chaotic saddles and interior crises in a dissipative nontwist system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.107.024216 http://hdl.handle.net/11449/248487 |
Resumo: | We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency. |
id |
UNSP_5cbdc97dd9276845d7a7700badfd65d5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/248487 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Chaotic saddles and interior crises in a dissipative nontwist systemWe consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.Departamento de Estatistica Matematica Aplicada e Ciencias da Computacao Universidade Estadual Paulista-UNESP Instituto de Geociências e Ciências Exatas-IGCe, SPUniversidade de São Paulo-USP Instituto de Física-IF, SPDepartamento de Física-DF Universidade Federal Do Paraná-UFPR, PRInstitute for Fusion Studies Department of Physics University of Texas at AustinDepartamento de Estatistica Matematica Aplicada e Ciencias da Computacao Universidade Estadual Paulista-UNESP Instituto de Geociências e Ciências Exatas-IGCe, SPUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Federal do Paraná (UFPR)University of Texas at AustinSimile Baroni, R. [UNESP]De Carvalho, R. Egydio [UNESP]Caldas, I. L.Viana, R. L.Morrison, P. J.2023-07-29T13:45:21Z2023-07-29T13:45:21Z2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.107.024216Physical Review E, v. 107, n. 2, 2023.2470-00532470-0045http://hdl.handle.net/11449/24848710.1103/PhysRevE.107.0242162-s2.0-85149707775Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Einfo:eu-repo/semantics/openAccess2023-07-29T13:45:21Zoai:repositorio.unesp.br:11449/248487Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:34:12.005703Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Chaotic saddles and interior crises in a dissipative nontwist system |
title |
Chaotic saddles and interior crises in a dissipative nontwist system |
spellingShingle |
Chaotic saddles and interior crises in a dissipative nontwist system Simile Baroni, R. [UNESP] |
title_short |
Chaotic saddles and interior crises in a dissipative nontwist system |
title_full |
Chaotic saddles and interior crises in a dissipative nontwist system |
title_fullStr |
Chaotic saddles and interior crises in a dissipative nontwist system |
title_full_unstemmed |
Chaotic saddles and interior crises in a dissipative nontwist system |
title_sort |
Chaotic saddles and interior crises in a dissipative nontwist system |
author |
Simile Baroni, R. [UNESP] |
author_facet |
Simile Baroni, R. [UNESP] De Carvalho, R. Egydio [UNESP] Caldas, I. L. Viana, R. L. Morrison, P. J. |
author_role |
author |
author2 |
De Carvalho, R. Egydio [UNESP] Caldas, I. L. Viana, R. L. Morrison, P. J. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade de São Paulo (USP) Universidade Federal do Paraná (UFPR) University of Texas at Austin |
dc.contributor.author.fl_str_mv |
Simile Baroni, R. [UNESP] De Carvalho, R. Egydio [UNESP] Caldas, I. L. Viana, R. L. Morrison, P. J. |
description |
We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T13:45:21Z 2023-07-29T13:45:21Z 2023-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.107.024216 Physical Review E, v. 107, n. 2, 2023. 2470-0053 2470-0045 http://hdl.handle.net/11449/248487 10.1103/PhysRevE.107.024216 2-s2.0-85149707775 |
url |
http://dx.doi.org/10.1103/PhysRevE.107.024216 http://hdl.handle.net/11449/248487 |
identifier_str_mv |
Physical Review E, v. 107, n. 2, 2023. 2470-0053 2470-0045 10.1103/PhysRevE.107.024216 2-s2.0-85149707775 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129088043352064 |