Chaotic saddles and interior crises in a dissipative nontwist system

Detalhes bibliográficos
Autor(a) principal: Simile Baroni, R. [UNESP]
Data de Publicação: 2023
Outros Autores: De Carvalho, R. Egydio [UNESP], Caldas, I. L., Viana, R. L., Morrison, P. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevE.107.024216
http://hdl.handle.net/11449/248487
Resumo: We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
id UNSP_5cbdc97dd9276845d7a7700badfd65d5
oai_identifier_str oai:repositorio.unesp.br:11449/248487
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Chaotic saddles and interior crises in a dissipative nontwist systemWe consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.Departamento de Estatistica Matematica Aplicada e Ciencias da Computacao Universidade Estadual Paulista-UNESP Instituto de Geociências e Ciências Exatas-IGCe, SPUniversidade de São Paulo-USP Instituto de Física-IF, SPDepartamento de Física-DF Universidade Federal Do Paraná-UFPR, PRInstitute for Fusion Studies Department of Physics University of Texas at AustinDepartamento de Estatistica Matematica Aplicada e Ciencias da Computacao Universidade Estadual Paulista-UNESP Instituto de Geociências e Ciências Exatas-IGCe, SPUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Federal do Paraná (UFPR)University of Texas at AustinSimile Baroni, R. [UNESP]De Carvalho, R. Egydio [UNESP]Caldas, I. L.Viana, R. L.Morrison, P. J.2023-07-29T13:45:21Z2023-07-29T13:45:21Z2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.107.024216Physical Review E, v. 107, n. 2, 2023.2470-00532470-0045http://hdl.handle.net/11449/24848710.1103/PhysRevE.107.0242162-s2.0-85149707775Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Einfo:eu-repo/semantics/openAccess2023-07-29T13:45:21Zoai:repositorio.unesp.br:11449/248487Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:34:12.005703Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Chaotic saddles and interior crises in a dissipative nontwist system
title Chaotic saddles and interior crises in a dissipative nontwist system
spellingShingle Chaotic saddles and interior crises in a dissipative nontwist system
Simile Baroni, R. [UNESP]
title_short Chaotic saddles and interior crises in a dissipative nontwist system
title_full Chaotic saddles and interior crises in a dissipative nontwist system
title_fullStr Chaotic saddles and interior crises in a dissipative nontwist system
title_full_unstemmed Chaotic saddles and interior crises in a dissipative nontwist system
title_sort Chaotic saddles and interior crises in a dissipative nontwist system
author Simile Baroni, R. [UNESP]
author_facet Simile Baroni, R. [UNESP]
De Carvalho, R. Egydio [UNESP]
Caldas, I. L.
Viana, R. L.
Morrison, P. J.
author_role author
author2 De Carvalho, R. Egydio [UNESP]
Caldas, I. L.
Viana, R. L.
Morrison, P. J.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
Universidade Federal do Paraná (UFPR)
University of Texas at Austin
dc.contributor.author.fl_str_mv Simile Baroni, R. [UNESP]
De Carvalho, R. Egydio [UNESP]
Caldas, I. L.
Viana, R. L.
Morrison, P. J.
description We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:45:21Z
2023-07-29T13:45:21Z
2023-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevE.107.024216
Physical Review E, v. 107, n. 2, 2023.
2470-0053
2470-0045
http://hdl.handle.net/11449/248487
10.1103/PhysRevE.107.024216
2-s2.0-85149707775
url http://dx.doi.org/10.1103/PhysRevE.107.024216
http://hdl.handle.net/11449/248487
identifier_str_mv Physical Review E, v. 107, n. 2, 2023.
2470-0053
2470-0045
10.1103/PhysRevE.107.024216
2-s2.0-85149707775
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review E
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129088043352064