A Deep Boltzmann machine-based approach for robust image denoising

Detalhes bibliográficos
Autor(a) principal: Pires, Rafael G.
Data de Publicação: 2018
Outros Autores: Santos, Daniel S. [UNESP], Souza, Gustavo B., Marana, Aparecido N. [UNESP], Levada, Alexandre L. M., Papa, João Paulo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-75193-1_63
http://hdl.handle.net/11449/179605
Resumo: A Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach.
id UNSP_5fad5bda0c4eefc46941e302b141f145
oai_identifier_str oai:repositorio.unesp.br:11449/179605
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Deep Boltzmann machine-based approach for robust image denoisingA Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computing UFSCar - Federal University of São CarlosDepartment of Computing UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01Department of Computing UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01FAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2016/19403-6CAPES: #306166/2014-3CNPq: #306166/2014-3Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Pires, Rafael G.Santos, Daniel S. [UNESP]Souza, Gustavo B.Marana, Aparecido N. [UNESP]Levada, Alexandre L. M.Papa, João Paulo [UNESP]2018-12-11T17:36:00Z2018-12-11T17:36:00Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject525-533http://dx.doi.org/10.1007/978-3-319-75193-1_63Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533.1611-33490302-9743http://hdl.handle.net/11449/17960510.1007/978-3-319-75193-1_632-s2.0-85042230686Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/179605Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:23:34.769246Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Deep Boltzmann machine-based approach for robust image denoising
title A Deep Boltzmann machine-based approach for robust image denoising
spellingShingle A Deep Boltzmann machine-based approach for robust image denoising
Pires, Rafael G.
title_short A Deep Boltzmann machine-based approach for robust image denoising
title_full A Deep Boltzmann machine-based approach for robust image denoising
title_fullStr A Deep Boltzmann machine-based approach for robust image denoising
title_full_unstemmed A Deep Boltzmann machine-based approach for robust image denoising
title_sort A Deep Boltzmann machine-based approach for robust image denoising
author Pires, Rafael G.
author_facet Pires, Rafael G.
Santos, Daniel S. [UNESP]
Souza, Gustavo B.
Marana, Aparecido N. [UNESP]
Levada, Alexandre L. M.
Papa, João Paulo [UNESP]
author_role author
author2 Santos, Daniel S. [UNESP]
Souza, Gustavo B.
Marana, Aparecido N. [UNESP]
Levada, Alexandre L. M.
Papa, João Paulo [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Pires, Rafael G.
Santos, Daniel S. [UNESP]
Souza, Gustavo B.
Marana, Aparecido N. [UNESP]
Levada, Alexandre L. M.
Papa, João Paulo [UNESP]
description A Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:36:00Z
2018-12-11T17:36:00Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-75193-1_63
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533.
1611-3349
0302-9743
http://hdl.handle.net/11449/179605
10.1007/978-3-319-75193-1_63
2-s2.0-85042230686
url http://dx.doi.org/10.1007/978-3-319-75193-1_63
http://hdl.handle.net/11449/179605
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533.
1611-3349
0302-9743
10.1007/978-3-319-75193-1_63
2-s2.0-85042230686
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 525-533
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129196316164096