A Deep Boltzmann machine-based approach for robust image denoising
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-75193-1_63 http://hdl.handle.net/11449/179605 |
Resumo: | A Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach. |
id |
UNSP_5fad5bda0c4eefc46941e302b141f145 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179605 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Deep Boltzmann machine-based approach for robust image denoisingA Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computing UFSCar - Federal University of São CarlosDepartment of Computing UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01Department of Computing UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01FAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2016/19403-6CAPES: #306166/2014-3CNPq: #306166/2014-3Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Pires, Rafael G.Santos, Daniel S. [UNESP]Souza, Gustavo B.Marana, Aparecido N. [UNESP]Levada, Alexandre L. M.Papa, João Paulo [UNESP]2018-12-11T17:36:00Z2018-12-11T17:36:00Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject525-533http://dx.doi.org/10.1007/978-3-319-75193-1_63Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533.1611-33490302-9743http://hdl.handle.net/11449/17960510.1007/978-3-319-75193-1_632-s2.0-85042230686Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/179605Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:23:34.769246Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Deep Boltzmann machine-based approach for robust image denoising |
title |
A Deep Boltzmann machine-based approach for robust image denoising |
spellingShingle |
A Deep Boltzmann machine-based approach for robust image denoising Pires, Rafael G. |
title_short |
A Deep Boltzmann machine-based approach for robust image denoising |
title_full |
A Deep Boltzmann machine-based approach for robust image denoising |
title_fullStr |
A Deep Boltzmann machine-based approach for robust image denoising |
title_full_unstemmed |
A Deep Boltzmann machine-based approach for robust image denoising |
title_sort |
A Deep Boltzmann machine-based approach for robust image denoising |
author |
Pires, Rafael G. |
author_facet |
Pires, Rafael G. Santos, Daniel S. [UNESP] Souza, Gustavo B. Marana, Aparecido N. [UNESP] Levada, Alexandre L. M. Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Santos, Daniel S. [UNESP] Souza, Gustavo B. Marana, Aparecido N. [UNESP] Levada, Alexandre L. M. Papa, João Paulo [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Pires, Rafael G. Santos, Daniel S. [UNESP] Souza, Gustavo B. Marana, Aparecido N. [UNESP] Levada, Alexandre L. M. Papa, João Paulo [UNESP] |
description |
A Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:36:00Z 2018-12-11T17:36:00Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-75193-1_63 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533. 1611-3349 0302-9743 http://hdl.handle.net/11449/179605 10.1007/978-3-319-75193-1_63 2-s2.0-85042230686 |
url |
http://dx.doi.org/10.1007/978-3-319-75193-1_63 http://hdl.handle.net/11449/179605 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533. 1611-3349 0302-9743 10.1007/978-3-319-75193-1_63 2-s2.0-85042230686 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
525-533 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129196316164096 |