A Hyperheuristic Approach for Unsupervised Land-Cover Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/JSTARS.2016.2557584 http://hdl.handle.net/11449/161736 |
Resumo: | Unsupervised land-use/cover classification is of great interest, since it becomes even more difficult to obtain high-quality labeled data. Still considered one of the most used clustering techniques, the well-known k-means plays an important role in the pattern recognition community. Its simple formulation and good results in a number of applications have fostered the development of new variants and methodologies to address the problem of minimizing the distance from each dataset sample to its nearest centroid (mean). In this paper, we present a genetic programming-based hyperheuristic approach to combine different metaheuristic techniques used to enhance k-means effectiveness. The proposed approach is evaluated in four satellite and one radar image showing promising results, while outperforming each individual metaheuristic technique. |
id |
UNSP_63f21e45e0ee5325a1fd83b8bd8e4595 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161736 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Hyperheuristic Approach for Unsupervised Land-Cover ClassificationHyperheuristick-meansland-cover classificationUnsupervised land-use/cover classification is of great interest, since it becomes even more difficult to obtain high-quality labeled data. Still considered one of the most used clustering techniques, the well-known k-means plays an important role in the pattern recognition community. Its simple formulation and good results in a number of applications have fostered the development of new variants and methodologies to address the problem of minimizing the distance from each dataset sample to its nearest centroid (mean). In this paper, we present a genetic programming-based hyperheuristic approach to combine different metaheuristic techniques used to enhance k-means effectiveness. The proposed approach is evaluated in four satellite and one radar image showing promising results, while outperforming each individual metaheuristic technique.Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo State South West Coll, Dept Hlth, Av Prof Clso Ferreira da Silva 1001, BR-18707150 Sao Paulo, BrazilUniv Fed Alfenas, Inst Nat Sci, BR-37130000 Alfenas, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilIeee-inst Electrical Electronics Engineers IncUniversidade Estadual Paulista (Unesp)Sao Paulo State South West CollUniv Fed AlfenasPapa, Joao Papa [UNESP]Papa, Luciene PatriciPereira, Danillo Roberto [UNESP]Pisani, Rodrigo Jose2018-11-26T16:48:26Z2018-11-26T16:48:26Z2016-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2333-2342application/pdfhttp://dx.doi.org/10.1109/JSTARS.2016.2557584Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 2333-2342, 2016.1939-1404http://hdl.handle.net/11449/16173610.1109/JSTARS.2016.2557584WOS:000379935100020WOS000379935100020.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing1,547info:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/161736Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:39:16.673071Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
title |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
spellingShingle |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification Papa, Joao Papa [UNESP] Hyperheuristic k-means land-cover classification |
title_short |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
title_full |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
title_fullStr |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
title_full_unstemmed |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
title_sort |
A Hyperheuristic Approach for Unsupervised Land-Cover Classification |
author |
Papa, Joao Papa [UNESP] |
author_facet |
Papa, Joao Papa [UNESP] Papa, Luciene Patrici Pereira, Danillo Roberto [UNESP] Pisani, Rodrigo Jose |
author_role |
author |
author2 |
Papa, Luciene Patrici Pereira, Danillo Roberto [UNESP] Pisani, Rodrigo Jose |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Sao Paulo State South West Coll Univ Fed Alfenas |
dc.contributor.author.fl_str_mv |
Papa, Joao Papa [UNESP] Papa, Luciene Patrici Pereira, Danillo Roberto [UNESP] Pisani, Rodrigo Jose |
dc.subject.por.fl_str_mv |
Hyperheuristic k-means land-cover classification |
topic |
Hyperheuristic k-means land-cover classification |
description |
Unsupervised land-use/cover classification is of great interest, since it becomes even more difficult to obtain high-quality labeled data. Still considered one of the most used clustering techniques, the well-known k-means plays an important role in the pattern recognition community. Its simple formulation and good results in a number of applications have fostered the development of new variants and methodologies to address the problem of minimizing the distance from each dataset sample to its nearest centroid (mean). In this paper, we present a genetic programming-based hyperheuristic approach to combine different metaheuristic techniques used to enhance k-means effectiveness. The proposed approach is evaluated in four satellite and one radar image showing promising results, while outperforming each individual metaheuristic technique. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-01 2018-11-26T16:48:26Z 2018-11-26T16:48:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/JSTARS.2016.2557584 Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 2333-2342, 2016. 1939-1404 http://hdl.handle.net/11449/161736 10.1109/JSTARS.2016.2557584 WOS:000379935100020 WOS000379935100020.pdf |
url |
http://dx.doi.org/10.1109/JSTARS.2016.2557584 http://hdl.handle.net/11449/161736 |
identifier_str_mv |
Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 2333-2342, 2016. 1939-1404 10.1109/JSTARS.2016.2557584 WOS:000379935100020 WOS000379935100020.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing 1,547 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2333-2342 application/pdf |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129447329529856 |