Analysis of node.js application performance using mongoDB drivers

Detalhes bibliográficos
Autor(a) principal: Cayres, Leandro Ungari [UNESP]
Data de Publicação: 2020
Outros Autores: de Lima, Bruno Santos [UNESP], Garcia, Rogério Eduardo [UNESP], Correia, Ronaldo Celso Messias [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-030-40690-5_21
http://hdl.handle.net/11449/201589
Resumo: At the last few years, the usage of NoSQL databases has increased, and consequently, the need for integrating with different programming languages. In that way, database drivers provide an API to perform database operations, which may impact on the performance of applications. In this article, we present a comparative study between two main drivers solutions to MongoDB in Node.js, through the evaluation of CRUD tests based on quantitative metrics (time execution, memory consumption, and CPU usage). Our results show which, under quantitative analysis, the MongoClient driver has presented a better performance than Mongoose driver in the considered scenarios, which may imply as the best alternative in the development of Node.js applications.
id UNSP_66fa0595accb59b3db5ff8f8d7596a4e
oai_identifier_str oai:repositorio.unesp.br:11449/201589
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Analysis of node.js application performance using mongoDB driversDriversMongoDBNode.js applicationNoSQL databasesPerformanceAt the last few years, the usage of NoSQL databases has increased, and consequently, the need for integrating with different programming languages. In that way, database drivers provide an API to perform database operations, which may impact on the performance of applications. In this article, we present a comparative study between two main drivers solutions to MongoDB in Node.js, through the evaluation of CRUD tests based on quantitative metrics (time execution, memory consumption, and CPU usage). Our results show which, under quantitative analysis, the MongoClient driver has presented a better performance than Mongoose driver in the considered scenarios, which may imply as the best alternative in the development of Node.js applications.Faculty of Science and Technology São Paulo State University (UNESP)Faculty of Science and Technology São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Cayres, Leandro Ungari [UNESP]de Lima, Bruno Santos [UNESP]Garcia, Rogério Eduardo [UNESP]Correia, Ronaldo Celso Messias [UNESP]2020-12-12T02:36:36Z2020-12-12T02:36:36Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject213-222http://dx.doi.org/10.1007/978-3-030-40690-5_21Advances in Intelligent Systems and Computing, v. 1137 AISC, p. 213-222.2194-53652194-5357http://hdl.handle.net/11449/20158910.1007/978-3-030-40690-5_212-s2.0-8508086276780310125732593610000-0003-1248-528XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Intelligent Systems and Computinginfo:eu-repo/semantics/openAccess2024-06-19T14:32:18Zoai:repositorio.unesp.br:11449/201589Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:20:09.482370Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Analysis of node.js application performance using mongoDB drivers
title Analysis of node.js application performance using mongoDB drivers
spellingShingle Analysis of node.js application performance using mongoDB drivers
Cayres, Leandro Ungari [UNESP]
Drivers
MongoDB
Node.js application
NoSQL databases
Performance
title_short Analysis of node.js application performance using mongoDB drivers
title_full Analysis of node.js application performance using mongoDB drivers
title_fullStr Analysis of node.js application performance using mongoDB drivers
title_full_unstemmed Analysis of node.js application performance using mongoDB drivers
title_sort Analysis of node.js application performance using mongoDB drivers
author Cayres, Leandro Ungari [UNESP]
author_facet Cayres, Leandro Ungari [UNESP]
de Lima, Bruno Santos [UNESP]
Garcia, Rogério Eduardo [UNESP]
Correia, Ronaldo Celso Messias [UNESP]
author_role author
author2 de Lima, Bruno Santos [UNESP]
Garcia, Rogério Eduardo [UNESP]
Correia, Ronaldo Celso Messias [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Cayres, Leandro Ungari [UNESP]
de Lima, Bruno Santos [UNESP]
Garcia, Rogério Eduardo [UNESP]
Correia, Ronaldo Celso Messias [UNESP]
dc.subject.por.fl_str_mv Drivers
MongoDB
Node.js application
NoSQL databases
Performance
topic Drivers
MongoDB
Node.js application
NoSQL databases
Performance
description At the last few years, the usage of NoSQL databases has increased, and consequently, the need for integrating with different programming languages. In that way, database drivers provide an API to perform database operations, which may impact on the performance of applications. In this article, we present a comparative study between two main drivers solutions to MongoDB in Node.js, through the evaluation of CRUD tests based on quantitative metrics (time execution, memory consumption, and CPU usage). Our results show which, under quantitative analysis, the MongoClient driver has presented a better performance than Mongoose driver in the considered scenarios, which may imply as the best alternative in the development of Node.js applications.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:36:36Z
2020-12-12T02:36:36Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-030-40690-5_21
Advances in Intelligent Systems and Computing, v. 1137 AISC, p. 213-222.
2194-5365
2194-5357
http://hdl.handle.net/11449/201589
10.1007/978-3-030-40690-5_21
2-s2.0-85080862767
8031012573259361
0000-0003-1248-528X
url http://dx.doi.org/10.1007/978-3-030-40690-5_21
http://hdl.handle.net/11449/201589
identifier_str_mv Advances in Intelligent Systems and Computing, v. 1137 AISC, p. 213-222.
2194-5365
2194-5357
10.1007/978-3-030-40690-5_21
2-s2.0-85080862767
8031012573259361
0000-0003-1248-528X
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Advances in Intelligent Systems and Computing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 213-222
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128792600772608