Analysis of node.js application performance using mongoDB drivers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-40690-5_21 http://hdl.handle.net/11449/201589 |
Resumo: | At the last few years, the usage of NoSQL databases has increased, and consequently, the need for integrating with different programming languages. In that way, database drivers provide an API to perform database operations, which may impact on the performance of applications. In this article, we present a comparative study between two main drivers solutions to MongoDB in Node.js, through the evaluation of CRUD tests based on quantitative metrics (time execution, memory consumption, and CPU usage). Our results show which, under quantitative analysis, the MongoClient driver has presented a better performance than Mongoose driver in the considered scenarios, which may imply as the best alternative in the development of Node.js applications. |
id |
UNSP_66fa0595accb59b3db5ff8f8d7596a4e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201589 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Analysis of node.js application performance using mongoDB driversDriversMongoDBNode.js applicationNoSQL databasesPerformanceAt the last few years, the usage of NoSQL databases has increased, and consequently, the need for integrating with different programming languages. In that way, database drivers provide an API to perform database operations, which may impact on the performance of applications. In this article, we present a comparative study between two main drivers solutions to MongoDB in Node.js, through the evaluation of CRUD tests based on quantitative metrics (time execution, memory consumption, and CPU usage). Our results show which, under quantitative analysis, the MongoClient driver has presented a better performance than Mongoose driver in the considered scenarios, which may imply as the best alternative in the development of Node.js applications.Faculty of Science and Technology São Paulo State University (UNESP)Faculty of Science and Technology São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Cayres, Leandro Ungari [UNESP]de Lima, Bruno Santos [UNESP]Garcia, Rogério Eduardo [UNESP]Correia, Ronaldo Celso Messias [UNESP]2020-12-12T02:36:36Z2020-12-12T02:36:36Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject213-222http://dx.doi.org/10.1007/978-3-030-40690-5_21Advances in Intelligent Systems and Computing, v. 1137 AISC, p. 213-222.2194-53652194-5357http://hdl.handle.net/11449/20158910.1007/978-3-030-40690-5_212-s2.0-8508086276780310125732593610000-0003-1248-528XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Intelligent Systems and Computinginfo:eu-repo/semantics/openAccess2024-06-19T14:32:18Zoai:repositorio.unesp.br:11449/201589Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:20:09.482370Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Analysis of node.js application performance using mongoDB drivers |
title |
Analysis of node.js application performance using mongoDB drivers |
spellingShingle |
Analysis of node.js application performance using mongoDB drivers Cayres, Leandro Ungari [UNESP] Drivers MongoDB Node.js application NoSQL databases Performance |
title_short |
Analysis of node.js application performance using mongoDB drivers |
title_full |
Analysis of node.js application performance using mongoDB drivers |
title_fullStr |
Analysis of node.js application performance using mongoDB drivers |
title_full_unstemmed |
Analysis of node.js application performance using mongoDB drivers |
title_sort |
Analysis of node.js application performance using mongoDB drivers |
author |
Cayres, Leandro Ungari [UNESP] |
author_facet |
Cayres, Leandro Ungari [UNESP] de Lima, Bruno Santos [UNESP] Garcia, Rogério Eduardo [UNESP] Correia, Ronaldo Celso Messias [UNESP] |
author_role |
author |
author2 |
de Lima, Bruno Santos [UNESP] Garcia, Rogério Eduardo [UNESP] Correia, Ronaldo Celso Messias [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Cayres, Leandro Ungari [UNESP] de Lima, Bruno Santos [UNESP] Garcia, Rogério Eduardo [UNESP] Correia, Ronaldo Celso Messias [UNESP] |
dc.subject.por.fl_str_mv |
Drivers MongoDB Node.js application NoSQL databases Performance |
topic |
Drivers MongoDB Node.js application NoSQL databases Performance |
description |
At the last few years, the usage of NoSQL databases has increased, and consequently, the need for integrating with different programming languages. In that way, database drivers provide an API to perform database operations, which may impact on the performance of applications. In this article, we present a comparative study between two main drivers solutions to MongoDB in Node.js, through the evaluation of CRUD tests based on quantitative metrics (time execution, memory consumption, and CPU usage). Our results show which, under quantitative analysis, the MongoClient driver has presented a better performance than Mongoose driver in the considered scenarios, which may imply as the best alternative in the development of Node.js applications. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:36:36Z 2020-12-12T02:36:36Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-40690-5_21 Advances in Intelligent Systems and Computing, v. 1137 AISC, p. 213-222. 2194-5365 2194-5357 http://hdl.handle.net/11449/201589 10.1007/978-3-030-40690-5_21 2-s2.0-85080862767 8031012573259361 0000-0003-1248-528X |
url |
http://dx.doi.org/10.1007/978-3-030-40690-5_21 http://hdl.handle.net/11449/201589 |
identifier_str_mv |
Advances in Intelligent Systems and Computing, v. 1137 AISC, p. 213-222. 2194-5365 2194-5357 10.1007/978-3-030-40690-5_21 2-s2.0-85080862767 8031012573259361 0000-0003-1248-528X |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advances in Intelligent Systems and Computing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
213-222 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128792600772608 |