Energy gain induced by boundary crisis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.84.036204 http://hdl.handle.net/11449/219718 |
Resumo: | We consider a nonlinear system and show the unexpected and surprising result that, even for high dissipation, the mean energy of a particle can attain higher values than when there is no dissipation in the system. We reconsider the time-dependent annular billiard in the presence of inelastic collisions with the boundaries. For some magnitudes of dissipation, we observe the phenomenon of boundary crisis, which drives the particles to an asymptotic attractive fixed point located at a value of energy that is higher than the mean energy of the nondissipative case and so much higher than the mean energy just before the crisis. We should emphasize that the unexpected results presented here reveal the importance of a nonlinear dynamics analysis to explain the paradoxical strategy of introducing dissipation in the system in order to gain energy. © 2011 American Physical Society. |
id |
UNSP_8d1d1a03569eca453a7c07fda52f2e64 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/219718 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Energy gain induced by boundary crisisAnnular billiardBoundary crisisEnergy gainFixed pointsInelastic collisionMean energyNon-linear dynamicsTime-dependentA-particlesWe consider a nonlinear system and show the unexpected and surprising result that, even for high dissipation, the mean energy of a particle can attain higher values than when there is no dissipation in the system. We reconsider the time-dependent annular billiard in the presence of inelastic collisions with the boundaries. For some magnitudes of dissipation, we observe the phenomenon of boundary crisis, which drives the particles to an asymptotic attractive fixed point located at a value of energy that is higher than the mean energy of the nondissipative case and so much higher than the mean energy just before the crisis. We should emphasize that the unexpected results presented here reveal the importance of a nonlinear dynamics analysis to explain the paradoxical strategy of introducing dissipation in the system in order to gain energy. © 2011 American Physical Society.Instituto de Física Universidade de São Paulo-USP, 05315-970 São Paulo, São PauloInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista-UNESP, 13506-900 Rio Claro, São PauloInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista-UNESP, 13506-900 Rio Claro, São PauloUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Abud, C. Vieira [UNESP]De Carvalho, R. Egydio [UNESP]2022-04-28T18:57:12Z2022-04-28T18:57:12Z2011-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.84.036204Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 84, n. 3, 2011.1539-37551550-2376http://hdl.handle.net/11449/21971810.1103/PhysRevE.84.0362042-s2.0-80053045881Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsinfo:eu-repo/semantics/openAccess2022-04-28T18:57:12Zoai:repositorio.unesp.br:11449/219718Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:27:08.716014Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Energy gain induced by boundary crisis |
title |
Energy gain induced by boundary crisis |
spellingShingle |
Energy gain induced by boundary crisis Abud, C. Vieira [UNESP] Annular billiard Boundary crisis Energy gain Fixed points Inelastic collision Mean energy Non-linear dynamics Time-dependent A-particles |
title_short |
Energy gain induced by boundary crisis |
title_full |
Energy gain induced by boundary crisis |
title_fullStr |
Energy gain induced by boundary crisis |
title_full_unstemmed |
Energy gain induced by boundary crisis |
title_sort |
Energy gain induced by boundary crisis |
author |
Abud, C. Vieira [UNESP] |
author_facet |
Abud, C. Vieira [UNESP] De Carvalho, R. Egydio [UNESP] |
author_role |
author |
author2 |
De Carvalho, R. Egydio [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Abud, C. Vieira [UNESP] De Carvalho, R. Egydio [UNESP] |
dc.subject.por.fl_str_mv |
Annular billiard Boundary crisis Energy gain Fixed points Inelastic collision Mean energy Non-linear dynamics Time-dependent A-particles |
topic |
Annular billiard Boundary crisis Energy gain Fixed points Inelastic collision Mean energy Non-linear dynamics Time-dependent A-particles |
description |
We consider a nonlinear system and show the unexpected and surprising result that, even for high dissipation, the mean energy of a particle can attain higher values than when there is no dissipation in the system. We reconsider the time-dependent annular billiard in the presence of inelastic collisions with the boundaries. For some magnitudes of dissipation, we observe the phenomenon of boundary crisis, which drives the particles to an asymptotic attractive fixed point located at a value of energy that is higher than the mean energy of the nondissipative case and so much higher than the mean energy just before the crisis. We should emphasize that the unexpected results presented here reveal the importance of a nonlinear dynamics analysis to explain the paradoxical strategy of introducing dissipation in the system in order to gain energy. © 2011 American Physical Society. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09-08 2022-04-28T18:57:12Z 2022-04-28T18:57:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.84.036204 Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 84, n. 3, 2011. 1539-3755 1550-2376 http://hdl.handle.net/11449/219718 10.1103/PhysRevE.84.036204 2-s2.0-80053045881 |
url |
http://dx.doi.org/10.1103/PhysRevE.84.036204 http://hdl.handle.net/11449/219718 |
identifier_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 84, n. 3, 2011. 1539-3755 1550-2376 10.1103/PhysRevE.84.036204 2-s2.0-80053045881 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128223513411584 |