Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s42979-020-00295-9 http://hdl.handle.net/11449/233900 |
Resumo: | Due to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations. |
id |
UNSP_95222f813a830ed67adc1ff9ed93fe2d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/233900 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?Convolutional neural networksGait recognitionOptical character recognitionPoolingDue to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.PetrobrasFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar Federal University of São CarlosUNESP State University of Sao PauloCenpes Petróleo Brasileiro S.A. Petrobras, RJUNESP State University of Sao PauloPetrobras: #2017/00285-6FAPESP: #2017/25908-6FAPESP: #2018/15597-6FAPESP: #2019/07665-4CNPq: #307066/2017-7CNPq: #427968/2018-6FAPESP: \#2013/07375-0FAPESP: \#2014/12236-1Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)PetrobrasSantos, Claudio Filipi Goncalves dosMoreira, Thierry Pinheiro [UNESP]Colombo, DaniloPapa, João Paulo [UNESP]2022-05-01T11:23:36Z2022-05-01T11:23:36Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s42979-020-00295-9SN Computer Science, v. 1, n. 5, 2020.2661-89072662-995Xhttp://hdl.handle.net/11449/23390010.1007/s42979-020-00295-92-s2.0-85121264681Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSN Computer Scienceinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/233900Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:53:20.641711Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
title |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
spellingShingle |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? Santos, Claudio Filipi Goncalves dos Convolutional neural networks Gait recognition Optical character recognition Pooling |
title_short |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
title_full |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
title_fullStr |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
title_full_unstemmed |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
title_sort |
Does Removing Pooling Layers from Convolutional Neural Networks Improve Results? |
author |
Santos, Claudio Filipi Goncalves dos |
author_facet |
Santos, Claudio Filipi Goncalves dos Moreira, Thierry Pinheiro [UNESP] Colombo, Danilo Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Moreira, Thierry Pinheiro [UNESP] Colombo, Danilo Papa, João Paulo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (UNESP) Petrobras |
dc.contributor.author.fl_str_mv |
Santos, Claudio Filipi Goncalves dos Moreira, Thierry Pinheiro [UNESP] Colombo, Danilo Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Convolutional neural networks Gait recognition Optical character recognition Pooling |
topic |
Convolutional neural networks Gait recognition Optical character recognition Pooling |
description |
Due to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-01 2022-05-01T11:23:36Z 2022-05-01T11:23:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s42979-020-00295-9 SN Computer Science, v. 1, n. 5, 2020. 2661-8907 2662-995X http://hdl.handle.net/11449/233900 10.1007/s42979-020-00295-9 2-s2.0-85121264681 |
url |
http://dx.doi.org/10.1007/s42979-020-00295-9 http://hdl.handle.net/11449/233900 |
identifier_str_mv |
SN Computer Science, v. 1, n. 5, 2020. 2661-8907 2662-995X 10.1007/s42979-020-00295-9 2-s2.0-85121264681 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
SN Computer Science |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129369796771840 |