Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?

Detalhes bibliográficos
Autor(a) principal: Santos, Claudio Filipi Goncalves dos
Data de Publicação: 2020
Outros Autores: Moreira, Thierry Pinheiro [UNESP], Colombo, Danilo, Papa, João Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s42979-020-00295-9
http://hdl.handle.net/11449/233900
Resumo: Due to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.
id UNSP_95222f813a830ed67adc1ff9ed93fe2d
oai_identifier_str oai:repositorio.unesp.br:11449/233900
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?Convolutional neural networksGait recognitionOptical character recognitionPoolingDue to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.PetrobrasFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar Federal University of São CarlosUNESP State University of Sao PauloCenpes Petróleo Brasileiro S.A. Petrobras, RJUNESP State University of Sao PauloPetrobras: #2017/00285-6FAPESP: #2017/25908-6FAPESP: #2018/15597-6FAPESP: #2019/07665-4CNPq: #307066/2017-7CNPq: #427968/2018-6FAPESP: \#2013/07375-0FAPESP: \#2014/12236-1Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)PetrobrasSantos, Claudio Filipi Goncalves dosMoreira, Thierry Pinheiro [UNESP]Colombo, DaniloPapa, João Paulo [UNESP]2022-05-01T11:23:36Z2022-05-01T11:23:36Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s42979-020-00295-9SN Computer Science, v. 1, n. 5, 2020.2661-89072662-995Xhttp://hdl.handle.net/11449/23390010.1007/s42979-020-00295-92-s2.0-85121264681Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSN Computer Scienceinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/233900Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:53:20.641711Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
title Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
spellingShingle Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
Santos, Claudio Filipi Goncalves dos
Convolutional neural networks
Gait recognition
Optical character recognition
Pooling
title_short Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
title_full Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
title_fullStr Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
title_full_unstemmed Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
title_sort Does Removing Pooling Layers from Convolutional Neural Networks Improve Results?
author Santos, Claudio Filipi Goncalves dos
author_facet Santos, Claudio Filipi Goncalves dos
Moreira, Thierry Pinheiro [UNESP]
Colombo, Danilo
Papa, João Paulo [UNESP]
author_role author
author2 Moreira, Thierry Pinheiro [UNESP]
Colombo, Danilo
Papa, João Paulo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (UNESP)
Petrobras
dc.contributor.author.fl_str_mv Santos, Claudio Filipi Goncalves dos
Moreira, Thierry Pinheiro [UNESP]
Colombo, Danilo
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Convolutional neural networks
Gait recognition
Optical character recognition
Pooling
topic Convolutional neural networks
Gait recognition
Optical character recognition
Pooling
description Due to their number of parameters, convolutional neural networks are known to take long training periods and extended inference time. Learning may take so much computational power that it requires a costly machine and, sometimes, weeks for training. In this context, there is a trend already in motion to replace convolutional pooling layers for a stride operation in the previous layer to save time. In this work, we evaluate the speedup of such an approach and how it trades off with accuracy loss in multiple computer vision domains, deep neural architectures, and datasets. The results showed significant acceleration with an almost negligible loss in accuracy, when any, which is a further indication that convolutional pooling on deep learning performs redundant calculations.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-01
2022-05-01T11:23:36Z
2022-05-01T11:23:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s42979-020-00295-9
SN Computer Science, v. 1, n. 5, 2020.
2661-8907
2662-995X
http://hdl.handle.net/11449/233900
10.1007/s42979-020-00295-9
2-s2.0-85121264681
url http://dx.doi.org/10.1007/s42979-020-00295-9
http://hdl.handle.net/11449/233900
identifier_str_mv SN Computer Science, v. 1, n. 5, 2020.
2661-8907
2662-995X
10.1007/s42979-020-00295-9
2-s2.0-85121264681
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SN Computer Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129369796771840