Improving Graphene-metal Contacts: Thermal Induced Polishing

Detalhes bibliográficos
Autor(a) principal: Oliveira, Eliezer Fernando
Data de Publicação: 2018
Outros Autores: Barbosa dos Santos, Ricardo Paupitz [UNESP], Silva Antreto, Pedro Alves da, Moshkalev, Stanislav, Galvao, Douglas Soares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1557/adv.2018.66
http://hdl.handle.net/11449/160164
Resumo: Graphene is a very promising material for nanoelectronics applications due to its unique and remarkable electronic and thermal properties. However, when deposited on metallic electrodes the overall thermal conductivity is significantly decreased. This phenomenon has been attributed to the mismatch between the interfaces and contact thermal resistance. Experimentally, one way to improve the graphene/metal contact is thorough high-temperature annealing, but the detailed mechanisms behind these processes remain unclear. In order to address these questions, we carried out fully atomistic reactive molecular dynamics simulations using the ReaxFF force field to investigate the interactions between multi-layer graphene and metallic electrodes (nickel) under (thermal) annealing. Our results show that the annealing induces an upward-downward movement of the graphene layers, causing a pile-driver-like effect over the metallic surface. This graphene induced movements cause a planarization (thermal polishing-like effect) of the metallic surface, which results in the increase of the effective graphene/metal contact area. This can also explain the experimentally observed improvements of the thermal and electric conductivities.
id UNSP_9a07bb8df1256bd56afd273244948b90
oai_identifier_str oai:repositorio.unesp.br:11449/160164
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Improving Graphene-metal Contacts: Thermal Induced PolishingGraphene is a very promising material for nanoelectronics applications due to its unique and remarkable electronic and thermal properties. However, when deposited on metallic electrodes the overall thermal conductivity is significantly decreased. This phenomenon has been attributed to the mismatch between the interfaces and contact thermal resistance. Experimentally, one way to improve the graphene/metal contact is thorough high-temperature annealing, but the detailed mechanisms behind these processes remain unclear. In order to address these questions, we carried out fully atomistic reactive molecular dynamics simulations using the ReaxFF force field to investigate the interactions between multi-layer graphene and metallic electrodes (nickel) under (thermal) annealing. Our results show that the annealing induces an upward-downward movement of the graphene layers, causing a pile-driver-like effect over the metallic surface. This graphene induced movements cause a planarization (thermal polishing-like effect) of the metallic surface, which results in the increase of the effective graphene/metal contact area. This can also explain the experimentally observed improvements of the thermal and electric conductivities.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Campinas, Gleb Wataghin Inst Phys, Campinas, SP, BrazilUniv Campinas UNICAMP, CCES, Campinas, SP, BrazilSao Paulo State Univ UNESP, Inst Geosci & Exact Sci, Rio Claro, SP, BrazilFed Univ ABC, Ctr Nat Human Sci, Santo Andre, SP, BrazilState Univ Campinas UNICAMP, Ctr Semicond Components, Campinas, SP, BrazilSao Paulo State Univ UNESP, Inst Geosci & Exact Sci, Rio Claro, SP, BrazilFAPESP: 2013/08293-7FAPESP: 2016/18499-0Cambridge Univ PressUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Universidade Federal do ABC (UFABC)Oliveira, Eliezer FernandoBarbosa dos Santos, Ricardo Paupitz [UNESP]Silva Antreto, Pedro Alves daMoshkalev, StanislavGalvao, Douglas Soares2018-11-26T15:47:43Z2018-11-26T15:47:43Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article73-78http://dx.doi.org/10.1557/adv.2018.66Mrs Advances. New York: Cambridge Univ Press, v. 3, n. 1-2, p. 73-78, 2018.2059-8521http://hdl.handle.net/11449/16016410.1557/adv.2018.66WOS:000427715200012Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMrs Advancesinfo:eu-repo/semantics/openAccess2021-10-23T14:40:27Zoai:repositorio.unesp.br:11449/160164Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:01:34.101260Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Improving Graphene-metal Contacts: Thermal Induced Polishing
title Improving Graphene-metal Contacts: Thermal Induced Polishing
spellingShingle Improving Graphene-metal Contacts: Thermal Induced Polishing
Oliveira, Eliezer Fernando
title_short Improving Graphene-metal Contacts: Thermal Induced Polishing
title_full Improving Graphene-metal Contacts: Thermal Induced Polishing
title_fullStr Improving Graphene-metal Contacts: Thermal Induced Polishing
title_full_unstemmed Improving Graphene-metal Contacts: Thermal Induced Polishing
title_sort Improving Graphene-metal Contacts: Thermal Induced Polishing
author Oliveira, Eliezer Fernando
author_facet Oliveira, Eliezer Fernando
Barbosa dos Santos, Ricardo Paupitz [UNESP]
Silva Antreto, Pedro Alves da
Moshkalev, Stanislav
Galvao, Douglas Soares
author_role author
author2 Barbosa dos Santos, Ricardo Paupitz [UNESP]
Silva Antreto, Pedro Alves da
Moshkalev, Stanislav
Galvao, Douglas Soares
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
Universidade Federal do ABC (UFABC)
dc.contributor.author.fl_str_mv Oliveira, Eliezer Fernando
Barbosa dos Santos, Ricardo Paupitz [UNESP]
Silva Antreto, Pedro Alves da
Moshkalev, Stanislav
Galvao, Douglas Soares
description Graphene is a very promising material for nanoelectronics applications due to its unique and remarkable electronic and thermal properties. However, when deposited on metallic electrodes the overall thermal conductivity is significantly decreased. This phenomenon has been attributed to the mismatch between the interfaces and contact thermal resistance. Experimentally, one way to improve the graphene/metal contact is thorough high-temperature annealing, but the detailed mechanisms behind these processes remain unclear. In order to address these questions, we carried out fully atomistic reactive molecular dynamics simulations using the ReaxFF force field to investigate the interactions between multi-layer graphene and metallic electrodes (nickel) under (thermal) annealing. Our results show that the annealing induces an upward-downward movement of the graphene layers, causing a pile-driver-like effect over the metallic surface. This graphene induced movements cause a planarization (thermal polishing-like effect) of the metallic surface, which results in the increase of the effective graphene/metal contact area. This can also explain the experimentally observed improvements of the thermal and electric conductivities.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T15:47:43Z
2018-11-26T15:47:43Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1557/adv.2018.66
Mrs Advances. New York: Cambridge Univ Press, v. 3, n. 1-2, p. 73-78, 2018.
2059-8521
http://hdl.handle.net/11449/160164
10.1557/adv.2018.66
WOS:000427715200012
url http://dx.doi.org/10.1557/adv.2018.66
http://hdl.handle.net/11449/160164
identifier_str_mv Mrs Advances. New York: Cambridge Univ Press, v. 3, n. 1-2, p. 73-78, 2018.
2059-8521
10.1557/adv.2018.66
WOS:000427715200012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Mrs Advances
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 73-78
dc.publisher.none.fl_str_mv Cambridge Univ Press
publisher.none.fl_str_mv Cambridge Univ Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128306114985984