Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s40863-022-00313-z http://hdl.handle.net/11449/240466 |
Resumo: | In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system. |
id |
UNSP_a64d89173a697190be392e09bc31d28d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/240466 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zonesHamiltonian systemsLimit CyclesPeriod annulusPiecewise linear differential systemIn this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.Instituto de Biociências Letras e Ciências Exatas) Universidade Estadual Paulista (UNESP, R. Cristovão Colombo, 2265, SPInstituto de Biociências Letras e Ciências Exatas) Universidade Estadual Paulista (UNESP, R. Cristovão Colombo, 2265, SPUniversidade Estadual Paulista (UNESP)Pessoa, Claudio [UNESP]Ribeiro, Ronisio [UNESP]2023-03-01T20:18:21Z2023-03-01T20:18:21Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40863-022-00313-zSao Paulo Journal of Mathematical Sciences.2316-90281982-6907http://hdl.handle.net/11449/24046610.1007/s40863-022-00313-z2-s2.0-85134221858Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSao Paulo Journal of Mathematical Sciencesinfo:eu-repo/semantics/openAccess2023-03-01T20:18:22Zoai:repositorio.unesp.br:11449/240466Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:34:46.492594Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
title |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
spellingShingle |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones Pessoa, Claudio [UNESP] Hamiltonian systems Limit Cycles Period annulus Piecewise linear differential system |
title_short |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
title_full |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
title_fullStr |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
title_full_unstemmed |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
title_sort |
Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones |
author |
Pessoa, Claudio [UNESP] |
author_facet |
Pessoa, Claudio [UNESP] Ribeiro, Ronisio [UNESP] |
author_role |
author |
author2 |
Ribeiro, Ronisio [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Pessoa, Claudio [UNESP] Ribeiro, Ronisio [UNESP] |
dc.subject.por.fl_str_mv |
Hamiltonian systems Limit Cycles Period annulus Piecewise linear differential system |
topic |
Hamiltonian systems Limit Cycles Period annulus Piecewise linear differential system |
description |
In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-03-01T20:18:21Z 2023-03-01T20:18:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40863-022-00313-z Sao Paulo Journal of Mathematical Sciences. 2316-9028 1982-6907 http://hdl.handle.net/11449/240466 10.1007/s40863-022-00313-z 2-s2.0-85134221858 |
url |
http://dx.doi.org/10.1007/s40863-022-00313-z http://hdl.handle.net/11449/240466 |
identifier_str_mv |
Sao Paulo Journal of Mathematical Sciences. 2316-9028 1982-6907 10.1007/s40863-022-00313-z 2-s2.0-85134221858 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sao Paulo Journal of Mathematical Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128674179842048 |