Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones

Detalhes bibliográficos
Autor(a) principal: Pessoa, Claudio [UNESP]
Data de Publicação: 2022
Outros Autores: Ribeiro, Ronisio [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40863-022-00313-z
http://hdl.handle.net/11449/240466
Resumo: In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.
id UNSP_a64d89173a697190be392e09bc31d28d
oai_identifier_str oai:repositorio.unesp.br:11449/240466
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zonesHamiltonian systemsLimit CyclesPeriod annulusPiecewise linear differential systemIn this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.Instituto de Biociências Letras e Ciências Exatas) Universidade Estadual Paulista (UNESP, R. Cristovão Colombo, 2265, SPInstituto de Biociências Letras e Ciências Exatas) Universidade Estadual Paulista (UNESP, R. Cristovão Colombo, 2265, SPUniversidade Estadual Paulista (UNESP)Pessoa, Claudio [UNESP]Ribeiro, Ronisio [UNESP]2023-03-01T20:18:21Z2023-03-01T20:18:21Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40863-022-00313-zSao Paulo Journal of Mathematical Sciences.2316-90281982-6907http://hdl.handle.net/11449/24046610.1007/s40863-022-00313-z2-s2.0-85134221858Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSao Paulo Journal of Mathematical Sciencesinfo:eu-repo/semantics/openAccess2023-03-01T20:18:22Zoai:repositorio.unesp.br:11449/240466Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:34:46.492594Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
title Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
spellingShingle Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
Pessoa, Claudio [UNESP]
Hamiltonian systems
Limit Cycles
Period annulus
Piecewise linear differential system
title_short Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
title_full Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
title_fullStr Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
title_full_unstemmed Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
title_sort Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
author Pessoa, Claudio [UNESP]
author_facet Pessoa, Claudio [UNESP]
Ribeiro, Ronisio [UNESP]
author_role author
author2 Ribeiro, Ronisio [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Pessoa, Claudio [UNESP]
Ribeiro, Ronisio [UNESP]
dc.subject.por.fl_str_mv Hamiltonian systems
Limit Cycles
Period annulus
Piecewise linear differential system
topic Hamiltonian systems
Limit Cycles
Period annulus
Piecewise linear differential system
description In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-03-01T20:18:21Z
2023-03-01T20:18:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40863-022-00313-z
Sao Paulo Journal of Mathematical Sciences.
2316-9028
1982-6907
http://hdl.handle.net/11449/240466
10.1007/s40863-022-00313-z
2-s2.0-85134221858
url http://dx.doi.org/10.1007/s40863-022-00313-z
http://hdl.handle.net/11449/240466
identifier_str_mv Sao Paulo Journal of Mathematical Sciences.
2316-9028
1982-6907
10.1007/s40863-022-00313-z
2-s2.0-85134221858
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sao Paulo Journal of Mathematical Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128674179842048