Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water

Detalhes bibliográficos
Autor(a) principal: Gomes-Filho, Márcio S.
Data de Publicação: 2023
Outros Autores: Torres, Alberto, Reily Rocha, Alexandre [UNESP], Pedroza, Luana S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acs.jpcb.2c09059
http://hdl.handle.net/11449/248312
Resumo: Molecular dynamics simulations have been used in different scientific fields to investigate a broad range of physical systems. However, the accuracy of calculation is based on the model considered to describe the atomic interactions. In particular, ab initio molecular dynamics (AIMD) has the accuracy of density functional theory (DFT) and thus is limited to small systems and a relatively short simulation time. In this scenario, Neural Network Force Fields (NNFFs) have an important role, since they provide a way to circumvent these caveats. In this work, we investigate NNFFs designed at the level of DFT to describe liquid water, focusing on the size and quality of the training data set considered. We show that structural properties are less dependent on the size of the training data set compared to dynamical ones (such as the diffusion coefficient), and a good sampling (selecting data reference for the training process) can lead to a small sample with good precision.
id UNSP_ae1ca8c32d53c20251babcad52296013
oai_identifier_str oai:repositorio.unesp.br:11449/248312
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid WaterMolecular dynamics simulations have been used in different scientific fields to investigate a broad range of physical systems. However, the accuracy of calculation is based on the model considered to describe the atomic interactions. In particular, ab initio molecular dynamics (AIMD) has the accuracy of density functional theory (DFT) and thus is limited to small systems and a relatively short simulation time. In this scenario, Neural Network Force Fields (NNFFs) have an important role, since they provide a way to circumvent these caveats. In this work, we investigate NNFFs designed at the level of DFT to describe liquid water, focusing on the size and quality of the training data set considered. We show that structural properties are less dependent on the size of the training data set compared to dynamical ones (such as the diffusion coefficient), and a good sampling (selecting data reference for the training process) can lead to a small sample with good precision.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Centro de Ciências Naturais e Humanas Universidade Federal do ABC, São PauloInstituto de Física Universidade de São PauloInstitute of Theoretical Physics São Paulo State UniversityInstitute of Theoretical Physics São Paulo State UniversityUniversidade Federal do ABC (UFABC)Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Gomes-Filho, Márcio S.Torres, AlbertoReily Rocha, Alexandre [UNESP]Pedroza, Luana S.2023-07-29T13:40:22Z2023-07-29T13:40:22Z2023-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1422-1428http://dx.doi.org/10.1021/acs.jpcb.2c09059Journal of Physical Chemistry B, v. 127, n. 6, p. 1422-1428, 2023.1520-52071520-6106http://hdl.handle.net/11449/24831210.1021/acs.jpcb.2c090592-s2.0-85147507003Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physical Chemistry Binfo:eu-repo/semantics/openAccess2023-07-29T13:40:22Zoai:repositorio.unesp.br:11449/248312Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:18:29.556503Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
title Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
spellingShingle Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
Gomes-Filho, Márcio S.
title_short Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
title_full Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
title_fullStr Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
title_full_unstemmed Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
title_sort Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water
author Gomes-Filho, Márcio S.
author_facet Gomes-Filho, Márcio S.
Torres, Alberto
Reily Rocha, Alexandre [UNESP]
Pedroza, Luana S.
author_role author
author2 Torres, Alberto
Reily Rocha, Alexandre [UNESP]
Pedroza, Luana S.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do ABC (UFABC)
Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Gomes-Filho, Márcio S.
Torres, Alberto
Reily Rocha, Alexandre [UNESP]
Pedroza, Luana S.
description Molecular dynamics simulations have been used in different scientific fields to investigate a broad range of physical systems. However, the accuracy of calculation is based on the model considered to describe the atomic interactions. In particular, ab initio molecular dynamics (AIMD) has the accuracy of density functional theory (DFT) and thus is limited to small systems and a relatively short simulation time. In this scenario, Neural Network Force Fields (NNFFs) have an important role, since they provide a way to circumvent these caveats. In this work, we investigate NNFFs designed at the level of DFT to describe liquid water, focusing on the size and quality of the training data set considered. We show that structural properties are less dependent on the size of the training data set compared to dynamical ones (such as the diffusion coefficient), and a good sampling (selecting data reference for the training process) can lead to a small sample with good precision.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:40:22Z
2023-07-29T13:40:22Z
2023-02-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acs.jpcb.2c09059
Journal of Physical Chemistry B, v. 127, n. 6, p. 1422-1428, 2023.
1520-5207
1520-6106
http://hdl.handle.net/11449/248312
10.1021/acs.jpcb.2c09059
2-s2.0-85147507003
url http://dx.doi.org/10.1021/acs.jpcb.2c09059
http://hdl.handle.net/11449/248312
identifier_str_mv Journal of Physical Chemistry B, v. 127, n. 6, p. 1422-1428, 2023.
1520-5207
1520-6106
10.1021/acs.jpcb.2c09059
2-s2.0-85147507003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Physical Chemistry B
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1422-1428
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129051145011200