Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia

Detalhes bibliográficos
Autor(a) principal: Munari, Fernanda Mosena
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/78090
Resumo: O DNA sofre constantes ataques de agentes que podem causar danos estruturais em uma ou em ambas as cadeias. Os agentes mutagênicos bifuncionais, amplamente utilizados como quimioterápicos, produzem uma lesão do tipo ponte intercadeia (ICL), que consiste numa ligação covalente entre as duas cadeias do DNA. As ICLs causam o bloqueio da replicação e da transcrição do DNA, e sua resolução pode levar à formação de quebras-duplas (DSBs). A célula utiliza vários mecanismos para reparar ICLs, entre os quais está a proteína Pso2, cuja transcrição é ativada especificamente após a indução desta lesão na célula. Visando à melhor caracterização da função da Pso2p na reparação de ICLs, buscou-se neste trabalho a identificação de proteínas interativas com Pso2p, através do sistema dois-híbridos em levedura. Entre as proteínas de fusão isoladas, a cinase Sak1 despertou grande interesse. Verificou-se que Sak1p interage com o domínio C-terminal β-CASP de Pso2p, além de fosforilar Pso2p in vitro. Ainda, Pso2p e Sak1p apresentaram interação epistática após tratamento com agentes indutores de ICLs. A partir desses resultados, investigou-se a interação dos genes que codificam para estas proteínas com outros genes da resposta a danos no DNA. Verificou-se que YKU70 não interage geneticamente com PSO2 após tratamento com 8-metoxipsoraleno fotoativado (8-MOP+UVA) e mostarda nitrogenada (HN2). As interações observadas após tratamento com 8-MOP+UVA para os genes do complexo MRX indicam que Mre11p (produto do gene MRE11) compete pelo mesmo substrato com as proteínas Pso2 e Sak1, mas atuam em vias diferentes de reparação de ICLs. Para o gene RAD50, constatou-se interação epistática com PSO2 e SAK1, apontando para a participação das proteínas Rad50, Pso2 e Sak1 na mesma via de reparação de ICLs. O gene XRS2, por sua vez, interagiu de forma não epistática com SAK1, indicando que as respectivas proteínas atuam em vias e substratos diferentes durante a reparação de ICLs. Por outro lado, constatou-se que não há interação genética de TEL1 e TOR1 com o gene PSO2 após tratamento com 8-MOP+UVA, sugerindo que as cinases Tel1 e Tor1 não participam da sinalização para a reparação de ICLs na via que inclui Pso2p. Com estes resultados, nós mostramos que a cinase Sak1 é importante para a atuação da nuclease Pso2 na reparação de quebras duplas no DNA. Conforme o modelo proposto neste trabalho, esta interação possivelmente seja necessária para ativar a função endonucleásica da proteína Pso2, recentemente identificada, para permitir a abertura de estruturas do tipo hairpin (grampo), que se formam no DNA em consequência de ICLs.
id URGS_0141a37afebca65311d263982d70f245
oai_identifier_str oai:www.lume.ufrgs.br:10183/78090
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Munari, Fernanda MosenaHenriques, João Antonio Pêgas2013-09-17T01:46:19Z2013http://hdl.handle.net/10183/78090000894833O DNA sofre constantes ataques de agentes que podem causar danos estruturais em uma ou em ambas as cadeias. Os agentes mutagênicos bifuncionais, amplamente utilizados como quimioterápicos, produzem uma lesão do tipo ponte intercadeia (ICL), que consiste numa ligação covalente entre as duas cadeias do DNA. As ICLs causam o bloqueio da replicação e da transcrição do DNA, e sua resolução pode levar à formação de quebras-duplas (DSBs). A célula utiliza vários mecanismos para reparar ICLs, entre os quais está a proteína Pso2, cuja transcrição é ativada especificamente após a indução desta lesão na célula. Visando à melhor caracterização da função da Pso2p na reparação de ICLs, buscou-se neste trabalho a identificação de proteínas interativas com Pso2p, através do sistema dois-híbridos em levedura. Entre as proteínas de fusão isoladas, a cinase Sak1 despertou grande interesse. Verificou-se que Sak1p interage com o domínio C-terminal β-CASP de Pso2p, além de fosforilar Pso2p in vitro. Ainda, Pso2p e Sak1p apresentaram interação epistática após tratamento com agentes indutores de ICLs. A partir desses resultados, investigou-se a interação dos genes que codificam para estas proteínas com outros genes da resposta a danos no DNA. Verificou-se que YKU70 não interage geneticamente com PSO2 após tratamento com 8-metoxipsoraleno fotoativado (8-MOP+UVA) e mostarda nitrogenada (HN2). As interações observadas após tratamento com 8-MOP+UVA para os genes do complexo MRX indicam que Mre11p (produto do gene MRE11) compete pelo mesmo substrato com as proteínas Pso2 e Sak1, mas atuam em vias diferentes de reparação de ICLs. Para o gene RAD50, constatou-se interação epistática com PSO2 e SAK1, apontando para a participação das proteínas Rad50, Pso2 e Sak1 na mesma via de reparação de ICLs. O gene XRS2, por sua vez, interagiu de forma não epistática com SAK1, indicando que as respectivas proteínas atuam em vias e substratos diferentes durante a reparação de ICLs. Por outro lado, constatou-se que não há interação genética de TEL1 e TOR1 com o gene PSO2 após tratamento com 8-MOP+UVA, sugerindo que as cinases Tel1 e Tor1 não participam da sinalização para a reparação de ICLs na via que inclui Pso2p. Com estes resultados, nós mostramos que a cinase Sak1 é importante para a atuação da nuclease Pso2 na reparação de quebras duplas no DNA. Conforme o modelo proposto neste trabalho, esta interação possivelmente seja necessária para ativar a função endonucleásica da proteína Pso2, recentemente identificada, para permitir a abertura de estruturas do tipo hairpin (grampo), que se formam no DNA em consequência de ICLs.DNA is often threatened by agents that may cause structural damage on one or both strands. Bifunctional mutagenic agents that are largely used as chemotherapeutics, produce a serious damage, namely interstrand crosslink (ICL), that covalently link both DNA strands. The formation of ICLs blocks DNA replication and transcription, and their processing may cause double strand-breaks (DSBs). Cells utilize many mechanisms to repair ICLs, including the Pso2 protein, which transcription is induced specifically after the formation of this lesion in DNA. In this study, we aimed to extend the characterization of Pso2 function in ICL repair trough the identification of interacting proteins, using the two-hybrid system (THS) in yeast. In addition, the genetic interaction of PSO2 with genes involved in early stages of ICL repair was also investigated. Among the fusion proteins isolated by THS, Sak1 kinase has raised great interest for further investigation. The results showed that Sak1p interacts with the C-terminal β-CASP domain of Pso2p and is able to phosphorylate Pso2p in vitro. Pso2p and Sak1p showed epistatic interaction after treatment with ICL-inducing agents. Based on these results, we investigated the interaction of PSO2 and SAK1 genes with other genes involved in DNA DSB repair. We found that YKU70 does not interact with PSO2 after treatments with photoactivated (8-methoxypsoralen) 8-MOP+UVA and nitrogen mustard (HN2). The interactions observed for MRX genes after treatment with 8-MOP+UVA indicate that Mre11p (product of MRE11 gene) competes with Pso2p and Sak1p for the same substrate, but act in different ICL repair pathways. XRS2 gene, in turn, showed an additive interaction with SAK1 indicating that the respective proteins act in different substrates and pathways during ICL repair. On the other hand, RAD50 presents epistatic interaction with PSO2 and SAK1 genes, pointing to the participation of Rad50, Pso2 and Sak1 proteins in the same pathway for ICL repair, in exponentially growing S. cerevisiae cells. Regarding to the TEL1 and TOR1 genes, it was found no genetic interaction with PSO2 gene after exposure to 8-MOP+UVA, suggesting that Tel1 and Tor1 kinases do not participate in signaling for ICL repair in the pathway which Pso2 nuclease acts. Considering these results, we showed that Sak1 kinase plays an important role in contribution to Pso2 nuclease in the repair of ICL-induced DSBs. According to the proposed model in this work, this interaction is possibly necessary to activate Pso2 endonucleolytic activity, recently identified to the opening of hairpin structures, which are formed as a result of the DNA ICLs.application/pdfporSaccharomyces cerevisiaeDNAEstudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulCentro de Biotecnologia do Estado do Rio Grande do SulPrograma de Pós-Graduação em Biologia Celular e MolecularPorto Alegre, BR-RS2013doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000894833.pdf000894833.pdfTexto completoapplication/pdf2404012http://www.lume.ufrgs.br/bitstream/10183/78090/1/000894833.pdf518759e4c5757eefaee1ccd07e79db13MD51TEXT000894833.pdf.txt000894833.pdf.txtExtracted Texttext/plain270042http://www.lume.ufrgs.br/bitstream/10183/78090/2/000894833.pdf.txt394290548c846911f83b3aec14b9b632MD52THUMBNAIL000894833.pdf.jpg000894833.pdf.jpgGenerated Thumbnailimage/jpeg1199http://www.lume.ufrgs.br/bitstream/10183/78090/3/000894833.pdf.jpg8c3c048bc92371e1fa86745f37c19833MD5310183/780902020-02-23 04:13:52.300211oai:www.lume.ufrgs.br:10183/78090Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532020-02-23T07:13:52Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
title Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
spellingShingle Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
Munari, Fernanda Mosena
Saccharomyces cerevisiae
DNA
title_short Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
title_full Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
title_fullStr Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
title_full_unstemmed Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
title_sort Estudo das interações do gene PSO2 de Saccharomyces cerevisiae com genes da resposta a danos no DNA após tratamento com agentes indutores de pontes intercadeia
author Munari, Fernanda Mosena
author_facet Munari, Fernanda Mosena
author_role author
dc.contributor.author.fl_str_mv Munari, Fernanda Mosena
dc.contributor.advisor1.fl_str_mv Henriques, João Antonio Pêgas
contributor_str_mv Henriques, João Antonio Pêgas
dc.subject.por.fl_str_mv Saccharomyces cerevisiae
DNA
topic Saccharomyces cerevisiae
DNA
description O DNA sofre constantes ataques de agentes que podem causar danos estruturais em uma ou em ambas as cadeias. Os agentes mutagênicos bifuncionais, amplamente utilizados como quimioterápicos, produzem uma lesão do tipo ponte intercadeia (ICL), que consiste numa ligação covalente entre as duas cadeias do DNA. As ICLs causam o bloqueio da replicação e da transcrição do DNA, e sua resolução pode levar à formação de quebras-duplas (DSBs). A célula utiliza vários mecanismos para reparar ICLs, entre os quais está a proteína Pso2, cuja transcrição é ativada especificamente após a indução desta lesão na célula. Visando à melhor caracterização da função da Pso2p na reparação de ICLs, buscou-se neste trabalho a identificação de proteínas interativas com Pso2p, através do sistema dois-híbridos em levedura. Entre as proteínas de fusão isoladas, a cinase Sak1 despertou grande interesse. Verificou-se que Sak1p interage com o domínio C-terminal β-CASP de Pso2p, além de fosforilar Pso2p in vitro. Ainda, Pso2p e Sak1p apresentaram interação epistática após tratamento com agentes indutores de ICLs. A partir desses resultados, investigou-se a interação dos genes que codificam para estas proteínas com outros genes da resposta a danos no DNA. Verificou-se que YKU70 não interage geneticamente com PSO2 após tratamento com 8-metoxipsoraleno fotoativado (8-MOP+UVA) e mostarda nitrogenada (HN2). As interações observadas após tratamento com 8-MOP+UVA para os genes do complexo MRX indicam que Mre11p (produto do gene MRE11) compete pelo mesmo substrato com as proteínas Pso2 e Sak1, mas atuam em vias diferentes de reparação de ICLs. Para o gene RAD50, constatou-se interação epistática com PSO2 e SAK1, apontando para a participação das proteínas Rad50, Pso2 e Sak1 na mesma via de reparação de ICLs. O gene XRS2, por sua vez, interagiu de forma não epistática com SAK1, indicando que as respectivas proteínas atuam em vias e substratos diferentes durante a reparação de ICLs. Por outro lado, constatou-se que não há interação genética de TEL1 e TOR1 com o gene PSO2 após tratamento com 8-MOP+UVA, sugerindo que as cinases Tel1 e Tor1 não participam da sinalização para a reparação de ICLs na via que inclui Pso2p. Com estes resultados, nós mostramos que a cinase Sak1 é importante para a atuação da nuclease Pso2 na reparação de quebras duplas no DNA. Conforme o modelo proposto neste trabalho, esta interação possivelmente seja necessária para ativar a função endonucleásica da proteína Pso2, recentemente identificada, para permitir a abertura de estruturas do tipo hairpin (grampo), que se formam no DNA em consequência de ICLs.
publishDate 2013
dc.date.accessioned.fl_str_mv 2013-09-17T01:46:19Z
dc.date.issued.fl_str_mv 2013
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/78090
dc.identifier.nrb.pt_BR.fl_str_mv 000894833
url http://hdl.handle.net/10183/78090
identifier_str_mv 000894833
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/78090/1/000894833.pdf
http://www.lume.ufrgs.br/bitstream/10183/78090/2/000894833.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/78090/3/000894833.pdf.jpg
bitstream.checksum.fl_str_mv 518759e4c5757eefaee1ccd07e79db13
394290548c846911f83b3aec14b9b632
8c3c048bc92371e1fa86745f37c19833
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816736884321157120