Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas

Detalhes bibliográficos
Autor(a) principal: Andrade, Gabriel Belem de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14092017-105719/
Resumo: O celulossomo é um complexo multienzimático extracelular utilizado por bactérias anaeróbias para a degradação de biomassa vegetal. Ele é composto por escafoldinas, estruturas alongadas que abrigam diversos módulos cohesina, às quais se ligam dockerinas, seus parceiros de interação específica de alta afinidade, fusionados às enzimas celulolíticas. Os módulos cohesina e dockerina compõem o elemento central da interação entre todos os componentes que integram o celulossomo. Esses módulos são divididos em tipos, de acordo com sua sequência primária. Essa divisão reflete efeitos funcionais distintos, sendo o tipo I responsável pela ligação de enzimas às escafoldinas, enquanto o tipo II medeia a ligação de escafoldinas à célula. O celulossomo de Ruminococcus flavefaciens é o mais complexo conhecido, e na classificação por tipos, suas sequências divergem, formando o tipo III, que foi posteriormente subdividido em 6 grupos para significância funcional. Nesse sistema, o principal responsável pela integração de enzimas ao sistema é a escafoldina primária ScaA, a qual interage com escafoldina adaptadora ScaB. A especificidade dessa ligação - dockerina de ScaA (Rf-DocA) com cohesinas de ScaB (Rf-CohB1-7) - é classificada como único membro do grupo 5, na divisão de grupos que compõem o tipo III. Assim, essa interação é de suma importância para a organização do celulossomo desse organismo, tendo sido estudada por meio de experimentos biofísicos e bioquímicos. Porém a falta de uma estrutura cristalina resolvida desses componentes limita a compreensão que podemos ter sobre a interação. 1-2 Nesse trabalho, apresentamos as estruturas cristalográficas de Rf-DocA, em complexo com a Rf-CohB4, além da estrutura dessa cohesina isolada, e ainda, a Rf-CohB1, e alguns de seus mutantes pontuais. Com isso, esclarecemos aspectos estruturais desses módulos, como a presença de dois sítios funcionais de ligação a cálcio em Rf-DocA. Também é observável pelos modelos gerados, detalhes da ligação entre eles, como os resíduos participantes da interação. Estudos de afinidade entre esses módulos foram conduzidos para a elucidar algumas propriedades da ligação entre esses módulos, de forma que descobrimos que ela ocorre de uma única maneira, e que há um loop na cohesina cuja flexibilidade afeta a afinidade da ligação. Isso sugere um mecanismo de alteração conformacional que regula a ligação à dockerina. Adicionalmente, buscamos o emprego desses módulos em uma aplicação tecnológica, desenhando redes automontáveis de proteínas, visando a construção de um nanomaterial. Essas redes são formadas por características intrínsecas das proteínas que os compõem, sendo o principal fator considerado sua simetria rotacional.3 Nesse sentido, as dockerinas e cohesinas foram utilizadas para ligação entre proteínas de diferentes simetrias. Utilizamos proteínas de simetrias C3, C4 e C6 com fusão a dockerinas, que se conectam às cohesinas fusionadas a proteínas de simetria C2, as quais formam o elemento linear da ligação entre os diferentes módulos. Esse desenho experimental permite a expressão e purificação independentes dos componentes, o que facilita a obtenção das redes, a partir da mistura dos dois componentes. Através de análises preliminares por microscopia eletrônica de transmissão, observamos a formação de filmes bidimensionais extensos e nanotubos com a construção testada.
id USP_3aefd9fee6cd8d5ede7126e1156f5574
oai_identifier_str oai:teses.usp.br:tde-14092017-105719
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínasStructural studies of dockerins and cohesins of Ruminococcus flavefaciens and their application in self-assembling arrays of proteinsRuminococcus flavefaciensRuminococcus flavefaciensCohesinCohesinaDockerinDockerinaNanomaterialRedes automontáveis NanomaterialSelf-assembling arraysO celulossomo é um complexo multienzimático extracelular utilizado por bactérias anaeróbias para a degradação de biomassa vegetal. Ele é composto por escafoldinas, estruturas alongadas que abrigam diversos módulos cohesina, às quais se ligam dockerinas, seus parceiros de interação específica de alta afinidade, fusionados às enzimas celulolíticas. Os módulos cohesina e dockerina compõem o elemento central da interação entre todos os componentes que integram o celulossomo. Esses módulos são divididos em tipos, de acordo com sua sequência primária. Essa divisão reflete efeitos funcionais distintos, sendo o tipo I responsável pela ligação de enzimas às escafoldinas, enquanto o tipo II medeia a ligação de escafoldinas à célula. O celulossomo de Ruminococcus flavefaciens é o mais complexo conhecido, e na classificação por tipos, suas sequências divergem, formando o tipo III, que foi posteriormente subdividido em 6 grupos para significância funcional. Nesse sistema, o principal responsável pela integração de enzimas ao sistema é a escafoldina primária ScaA, a qual interage com escafoldina adaptadora ScaB. A especificidade dessa ligação - dockerina de ScaA (Rf-DocA) com cohesinas de ScaB (Rf-CohB1-7) - é classificada como único membro do grupo 5, na divisão de grupos que compõem o tipo III. Assim, essa interação é de suma importância para a organização do celulossomo desse organismo, tendo sido estudada por meio de experimentos biofísicos e bioquímicos. Porém a falta de uma estrutura cristalina resolvida desses componentes limita a compreensão que podemos ter sobre a interação. 1-2 Nesse trabalho, apresentamos as estruturas cristalográficas de Rf-DocA, em complexo com a Rf-CohB4, além da estrutura dessa cohesina isolada, e ainda, a Rf-CohB1, e alguns de seus mutantes pontuais. Com isso, esclarecemos aspectos estruturais desses módulos, como a presença de dois sítios funcionais de ligação a cálcio em Rf-DocA. Também é observável pelos modelos gerados, detalhes da ligação entre eles, como os resíduos participantes da interação. Estudos de afinidade entre esses módulos foram conduzidos para a elucidar algumas propriedades da ligação entre esses módulos, de forma que descobrimos que ela ocorre de uma única maneira, e que há um loop na cohesina cuja flexibilidade afeta a afinidade da ligação. Isso sugere um mecanismo de alteração conformacional que regula a ligação à dockerina. Adicionalmente, buscamos o emprego desses módulos em uma aplicação tecnológica, desenhando redes automontáveis de proteínas, visando a construção de um nanomaterial. Essas redes são formadas por características intrínsecas das proteínas que os compõem, sendo o principal fator considerado sua simetria rotacional.3 Nesse sentido, as dockerinas e cohesinas foram utilizadas para ligação entre proteínas de diferentes simetrias. Utilizamos proteínas de simetrias C3, C4 e C6 com fusão a dockerinas, que se conectam às cohesinas fusionadas a proteínas de simetria C2, as quais formam o elemento linear da ligação entre os diferentes módulos. Esse desenho experimental permite a expressão e purificação independentes dos componentes, o que facilita a obtenção das redes, a partir da mistura dos dois componentes. Através de análises preliminares por microscopia eletrônica de transmissão, observamos a formação de filmes bidimensionais extensos e nanotubos com a construção testada.The cellulosome is an intricate multienzyme extracelular complexes evolved by anaerobic bacteria for degradation of cellulosic biomass. It is composed of scaffoldins, elongated structures, which bare numerous cohesin modules, which bind to dockerin modules, their high affinity and specificity partners, borne by cellulolytic enzymes. The cohesin and dockerina modules constitute the central element of the interaction between every component of the cellulosome. These modules are categorized in types, according to their primary sequence. That distribution reflects distinct functions, in which the type I is responsible for integration of enzymes to scaffoldins, while type II mediates anchoring of scaffoldins to the cell wall. The cellulosome of Ruminococcus flavefaciens is the most intricate known to date, which is categorized into a third type of cohesins and dockerins, due to sequence diversion. The type III was further divided into 6 groups to impart functional significance. In that system, the main enzyme integrating component is the primary scaffoldin ScaA, which interacts to the adaptor scaffoldin ScaB. The specificity of this interaction - dockerina of ScaA (Rf-DocA) to ScaB cohesins (Rf-CohB1-7) - is sorted as a single member of group 5, in the subtypes of type III. Thus, this interaction is essential for cellulosome organization, having been studied by biophysical and biochemical experiments. However, the lack of a solved crystalline structure of these components narrows our understanding on this interaction. In the present study, we present the structures of Rf-DocA, complexed to Rf-CohB4, besides the structure of this isolated cohesin, and also Rf-CohB1 and its point mutants. Due to these data, we clarify structural aspects of these modules, such as the occurrence of two functioning calcium binding sites in Rf-DocA. We also identified details of their binding, such as the interacting residues. Through binding affinity studies, we concluded that the interaction between these modules occurs in a single mode, and that there is a loop in the cohesin module whose flexibility has direct effects on the binding affinity to dockerin. Additionally, we sought to utilize these modules in a downstream application, by designing self-assembling arrays of proteins, aiming for the construction of a nanomaterial. These arrays are constructed from the intrinsic properties of its constituent proteins, in which the main factor is rotational symmetry. In this context, dockerina and cohesin modules were used of binding different symmetry proteins. We utilized C3, C4 and C6 point symmetry proteins fused to dockerin modules, which bind to the cohesin modules fused to C2 point symmetry proteins, which establish the linear connection between the distinct components. This experimental design allows for the independent expression and purification of the components, which facilitates the achievement of the arrays, by simple mixture of the two components. Through preliminary analysis by transmission election microscopy, we observed the construction of two-dimensional films and nanotubes.Biblioteca Digitais de Teses e Dissertações da USPNavarro, Marcos Vicente de Albuquerque SallesAndrade, Gabriel Belem de2017-06-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-14092017-105719/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-14092017-105719Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
Structural studies of dockerins and cohesins of Ruminococcus flavefaciens and their application in self-assembling arrays of proteins
title Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
spellingShingle Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
Andrade, Gabriel Belem de
Ruminococcus flavefaciens
Ruminococcus flavefaciens
Cohesin
Cohesina
Dockerin
Dockerina
Nanomaterial
Redes automontáveis Nanomaterial
Self-assembling arrays
title_short Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
title_full Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
title_fullStr Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
title_full_unstemmed Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
title_sort Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas
author Andrade, Gabriel Belem de
author_facet Andrade, Gabriel Belem de
author_role author
dc.contributor.none.fl_str_mv Navarro, Marcos Vicente de Albuquerque Salles
dc.contributor.author.fl_str_mv Andrade, Gabriel Belem de
dc.subject.por.fl_str_mv Ruminococcus flavefaciens
Ruminococcus flavefaciens
Cohesin
Cohesina
Dockerin
Dockerina
Nanomaterial
Redes automontáveis Nanomaterial
Self-assembling arrays
topic Ruminococcus flavefaciens
Ruminococcus flavefaciens
Cohesin
Cohesina
Dockerin
Dockerina
Nanomaterial
Redes automontáveis Nanomaterial
Self-assembling arrays
description O celulossomo é um complexo multienzimático extracelular utilizado por bactérias anaeróbias para a degradação de biomassa vegetal. Ele é composto por escafoldinas, estruturas alongadas que abrigam diversos módulos cohesina, às quais se ligam dockerinas, seus parceiros de interação específica de alta afinidade, fusionados às enzimas celulolíticas. Os módulos cohesina e dockerina compõem o elemento central da interação entre todos os componentes que integram o celulossomo. Esses módulos são divididos em tipos, de acordo com sua sequência primária. Essa divisão reflete efeitos funcionais distintos, sendo o tipo I responsável pela ligação de enzimas às escafoldinas, enquanto o tipo II medeia a ligação de escafoldinas à célula. O celulossomo de Ruminococcus flavefaciens é o mais complexo conhecido, e na classificação por tipos, suas sequências divergem, formando o tipo III, que foi posteriormente subdividido em 6 grupos para significância funcional. Nesse sistema, o principal responsável pela integração de enzimas ao sistema é a escafoldina primária ScaA, a qual interage com escafoldina adaptadora ScaB. A especificidade dessa ligação - dockerina de ScaA (Rf-DocA) com cohesinas de ScaB (Rf-CohB1-7) - é classificada como único membro do grupo 5, na divisão de grupos que compõem o tipo III. Assim, essa interação é de suma importância para a organização do celulossomo desse organismo, tendo sido estudada por meio de experimentos biofísicos e bioquímicos. Porém a falta de uma estrutura cristalina resolvida desses componentes limita a compreensão que podemos ter sobre a interação. 1-2 Nesse trabalho, apresentamos as estruturas cristalográficas de Rf-DocA, em complexo com a Rf-CohB4, além da estrutura dessa cohesina isolada, e ainda, a Rf-CohB1, e alguns de seus mutantes pontuais. Com isso, esclarecemos aspectos estruturais desses módulos, como a presença de dois sítios funcionais de ligação a cálcio em Rf-DocA. Também é observável pelos modelos gerados, detalhes da ligação entre eles, como os resíduos participantes da interação. Estudos de afinidade entre esses módulos foram conduzidos para a elucidar algumas propriedades da ligação entre esses módulos, de forma que descobrimos que ela ocorre de uma única maneira, e que há um loop na cohesina cuja flexibilidade afeta a afinidade da ligação. Isso sugere um mecanismo de alteração conformacional que regula a ligação à dockerina. Adicionalmente, buscamos o emprego desses módulos em uma aplicação tecnológica, desenhando redes automontáveis de proteínas, visando a construção de um nanomaterial. Essas redes são formadas por características intrínsecas das proteínas que os compõem, sendo o principal fator considerado sua simetria rotacional.3 Nesse sentido, as dockerinas e cohesinas foram utilizadas para ligação entre proteínas de diferentes simetrias. Utilizamos proteínas de simetrias C3, C4 e C6 com fusão a dockerinas, que se conectam às cohesinas fusionadas a proteínas de simetria C2, as quais formam o elemento linear da ligação entre os diferentes módulos. Esse desenho experimental permite a expressão e purificação independentes dos componentes, o que facilita a obtenção das redes, a partir da mistura dos dois componentes. Através de análises preliminares por microscopia eletrônica de transmissão, observamos a formação de filmes bidimensionais extensos e nanotubos com a construção testada.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14092017-105719/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14092017-105719/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090719933005824