Sensing technologies for topsoil mapping and soil functional assessment

Detalhes bibliográficos
Autor(a) principal: Quiñonez Silvero, Nélida Elizabet
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11140/tde-08042022-163716/
Resumo: This doctoral dissertation deals with the use of proximal and remote sensing technologies for mapping soil properties and the possibilities of using these products in the study of the functions that the soil is capable to offer. Digital soil mapping has gained strength since the 90’s, when the first concepts of pedometrics and predictive soil mapping were proposed. Currently, there is a growing demand for soil maps and sensing technologies are playing a key role in making this possible. Considering this scenario, the objective of this dissertation is to introduce examples of soil attribute mapping using bare soil images obtained from satellite time series and how to use these data in mapping examples of other characteristics related to soil functions. In Chapter 1, a general introduction to the work is presented and addresses the main problems that are intended to be resolved with this thesis are addressed. Chapter 2 explores the properties of satellite imagery at different scales and their influence on obtaining maps of soil properties at the farm level. It was observed that, in fact, maps produced with images of different pixel sizes were different. The impact of these maps at different scales was evaluated both for soil classification purposes and for soil management and it was observed that the delineation of mapping units can be affected by the quality of soil property maps. The same situation was described for the case of soil management, where there may be an inconsistency in the spatial distribution of specific soil properties which can lead to a different management strategy depending on which type of map and at which scale it is used. Chapter 3 proposes the joining of data from two satellites to obtain larger areas of exposed soil that can enable a better study of soil variations, similar to chapter 2, but at the regional level, approaching soil variation from a different point of view. In this chapter, it was observed that advances in terms of greater availability of satellite images over time provide a better understanding of soil variations. Chapter 4 presents strategies for mapping drainage classes in tropical regions. This chapter was developed to assess the ability of soil property maps to study features that are more complex and difficult to measure. Finally, Chapter 5 provides a review of the possibilities of remote and proximal sensors for measuring and studying soil functions. Here we described sensors from the laboratory to satellites that cover the entire electromagnetic spectrum and how they can be used to study soils. In the final topic, three examples of application in Brazil are presented and this thesis is concluded by discussing the main advantages, limitations and what still needs to be done to advance in the study of the soil resource using the available technologies.
id USP_4efb398508336aa2f437a37344ea3b4d
oai_identifier_str oai:teses.usp.br:tde-08042022-163716
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sensing technologies for topsoil mapping and soil functional assessmentTecnologias de sensoriamento para mapeamento do solo superficial e avaliação das funções do soloAprendizado de máquinaDigital soil mappingEscalaEspectroscopiaFunções do soloImagens multi-temporaisMachine learningMapeamento digital de solosMulti-temporal imagesProximal sensingRemote sensingResolução espacialScaleSensoriamento proximalSensoriamento remotoSoil functionsSpatial resolutionSpectroscopyThis doctoral dissertation deals with the use of proximal and remote sensing technologies for mapping soil properties and the possibilities of using these products in the study of the functions that the soil is capable to offer. Digital soil mapping has gained strength since the 90’s, when the first concepts of pedometrics and predictive soil mapping were proposed. Currently, there is a growing demand for soil maps and sensing technologies are playing a key role in making this possible. Considering this scenario, the objective of this dissertation is to introduce examples of soil attribute mapping using bare soil images obtained from satellite time series and how to use these data in mapping examples of other characteristics related to soil functions. In Chapter 1, a general introduction to the work is presented and addresses the main problems that are intended to be resolved with this thesis are addressed. Chapter 2 explores the properties of satellite imagery at different scales and their influence on obtaining maps of soil properties at the farm level. It was observed that, in fact, maps produced with images of different pixel sizes were different. The impact of these maps at different scales was evaluated both for soil classification purposes and for soil management and it was observed that the delineation of mapping units can be affected by the quality of soil property maps. The same situation was described for the case of soil management, where there may be an inconsistency in the spatial distribution of specific soil properties which can lead to a different management strategy depending on which type of map and at which scale it is used. Chapter 3 proposes the joining of data from two satellites to obtain larger areas of exposed soil that can enable a better study of soil variations, similar to chapter 2, but at the regional level, approaching soil variation from a different point of view. In this chapter, it was observed that advances in terms of greater availability of satellite images over time provide a better understanding of soil variations. Chapter 4 presents strategies for mapping drainage classes in tropical regions. This chapter was developed to assess the ability of soil property maps to study features that are more complex and difficult to measure. Finally, Chapter 5 provides a review of the possibilities of remote and proximal sensors for measuring and studying soil functions. Here we described sensors from the laboratory to satellites that cover the entire electromagnetic spectrum and how they can be used to study soils. In the final topic, three examples of application in Brazil are presented and this thesis is concluded by discussing the main advantages, limitations and what still needs to be done to advance in the study of the soil resource using the available technologies.Esta tese de doutorado trata do uso de tecnologias de sensoriamento remoto e proximal para o mapeamento de propriedades do solo e das possibilidades de uso destes produtos no estudo das funções que ele é capaz de oferecer. O mapeamento digital tem tomado força desde os anos 90’s quando foram propostos os primeiros conceitos de pedometria e mapeamento preditivo do solo. Atualmente, existe uma demanda crescente por mapas de solos e as tecnologias de detecção estão desempenhando um papel fundamental para que isto seja possível. Considerando este cenário, o objetivo desta tese é introduzir exemplos de mapeamento de atributos do solo utilizando imagens de solo exposto obtidas a partir de séries temporais de satélites e de como usar estes dados em exemplos de mapeamento de outros atributos do solo relacionadas às suas funções. No Capítulo 1 se expõe uma introdução geral do trabalho e se abordam as principais problemáticas que se pretendem resolver com esta tese. No Capítulo 2 se exploram as propriedades de imagens de satélite em diferentes escalas e sua influência na obtenção de mapas de propriedades de solo no nível de fazenda. Foi observado que, de fato, os mapas produzidos com imagens de tamanho de pixel diferente proporcionam mapas diferentes. O impacto destes mapas em diferentes escalas foi avaliado tanto para fins de classificação como para o manejo do solo e foi observado que o delineamento de unidades de mapeamento pode ser afetado pela qualidade dos mapas. A mesma situação foi descrita para o caso do manejo do solo, onde pode haver uma inconsistência na distribuição espacial de propriedades do solo específicas o que pode levar a uma estratégia de manejo diferente dependendo de qual tipo de mapa e em qual escala é utilizado. O capítulo 3 propõe a junção de dados de dois satélites para a obtenção de maiores áreas de solo exposto que possam possibilitar o melhor estudo da variação do solo, similar ao capítulo 2, porém no nível regional abordando a variação do solo desde um ponto de vista macro. Neste capítulo, foi observado que os avanços em termos de maior disponibilidade de imagens de satélite ao longo do tempo proporcionam um melhor entendimento das variações do solo. Já no capítulo 4 se apresentam estratégias para o mapeamento de classes de drenagem em regiões tropicais. Este capítulo foi desenvolvido com o intuito de avaliar a capacidade dos mapas de propriedades do solo para estudar características que são mais complexas e difíceis de estudar. Finalmente, o capítulo 5 proporciona uma revisão das possibilidades dos sensores remotos e proximais para a medição e estudo das funções do solo. Aqui se descrevem desde sensores de laboratório até satélites que cobrem toda a região do espectro eletromagnético e de como estes podem ser utilizados para estudar os solos. No tópico final se apresentam três exemplos de aplicação no Brasil e se conclui esta tese discutindo as principais vantagens, limitações e o que ainda precisa ser feito para avançar no estudo do recurso solo fazendo uso das tecnologias disponíveis.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloQuiñonez Silvero, Nélida Elizabet 2022-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-08042022-163716/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-04-12T12:02:03Zoai:teses.usp.br:tde-08042022-163716Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-04-12T12:02:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sensing technologies for topsoil mapping and soil functional assessment
Tecnologias de sensoriamento para mapeamento do solo superficial e avaliação das funções do solo
title Sensing technologies for topsoil mapping and soil functional assessment
spellingShingle Sensing technologies for topsoil mapping and soil functional assessment
Quiñonez Silvero, Nélida Elizabet
Aprendizado de máquina
Digital soil mapping
Escala
Espectroscopia
Funções do solo
Imagens multi-temporais
Machine learning
Mapeamento digital de solos
Multi-temporal images
Proximal sensing
Remote sensing
Resolução espacial
Scale
Sensoriamento proximal
Sensoriamento remoto
Soil functions
Spatial resolution
Spectroscopy
title_short Sensing technologies for topsoil mapping and soil functional assessment
title_full Sensing technologies for topsoil mapping and soil functional assessment
title_fullStr Sensing technologies for topsoil mapping and soil functional assessment
title_full_unstemmed Sensing technologies for topsoil mapping and soil functional assessment
title_sort Sensing technologies for topsoil mapping and soil functional assessment
author Quiñonez Silvero, Nélida Elizabet
author_facet Quiñonez Silvero, Nélida Elizabet
author_role author
dc.contributor.none.fl_str_mv Dematte, Jose Alexandre Melo
dc.contributor.author.fl_str_mv Quiñonez Silvero, Nélida Elizabet
dc.subject.por.fl_str_mv Aprendizado de máquina
Digital soil mapping
Escala
Espectroscopia
Funções do solo
Imagens multi-temporais
Machine learning
Mapeamento digital de solos
Multi-temporal images
Proximal sensing
Remote sensing
Resolução espacial
Scale
Sensoriamento proximal
Sensoriamento remoto
Soil functions
Spatial resolution
Spectroscopy
topic Aprendizado de máquina
Digital soil mapping
Escala
Espectroscopia
Funções do solo
Imagens multi-temporais
Machine learning
Mapeamento digital de solos
Multi-temporal images
Proximal sensing
Remote sensing
Resolução espacial
Scale
Sensoriamento proximal
Sensoriamento remoto
Soil functions
Spatial resolution
Spectroscopy
description This doctoral dissertation deals with the use of proximal and remote sensing technologies for mapping soil properties and the possibilities of using these products in the study of the functions that the soil is capable to offer. Digital soil mapping has gained strength since the 90’s, when the first concepts of pedometrics and predictive soil mapping were proposed. Currently, there is a growing demand for soil maps and sensing technologies are playing a key role in making this possible. Considering this scenario, the objective of this dissertation is to introduce examples of soil attribute mapping using bare soil images obtained from satellite time series and how to use these data in mapping examples of other characteristics related to soil functions. In Chapter 1, a general introduction to the work is presented and addresses the main problems that are intended to be resolved with this thesis are addressed. Chapter 2 explores the properties of satellite imagery at different scales and their influence on obtaining maps of soil properties at the farm level. It was observed that, in fact, maps produced with images of different pixel sizes were different. The impact of these maps at different scales was evaluated both for soil classification purposes and for soil management and it was observed that the delineation of mapping units can be affected by the quality of soil property maps. The same situation was described for the case of soil management, where there may be an inconsistency in the spatial distribution of specific soil properties which can lead to a different management strategy depending on which type of map and at which scale it is used. Chapter 3 proposes the joining of data from two satellites to obtain larger areas of exposed soil that can enable a better study of soil variations, similar to chapter 2, but at the regional level, approaching soil variation from a different point of view. In this chapter, it was observed that advances in terms of greater availability of satellite images over time provide a better understanding of soil variations. Chapter 4 presents strategies for mapping drainage classes in tropical regions. This chapter was developed to assess the ability of soil property maps to study features that are more complex and difficult to measure. Finally, Chapter 5 provides a review of the possibilities of remote and proximal sensors for measuring and studying soil functions. Here we described sensors from the laboratory to satellites that cover the entire electromagnetic spectrum and how they can be used to study soils. In the final topic, three examples of application in Brazil are presented and this thesis is concluded by discussing the main advantages, limitations and what still needs to be done to advance in the study of the soil resource using the available technologies.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11140/tde-08042022-163716/
url https://www.teses.usp.br/teses/disponiveis/11/11140/tde-08042022-163716/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256799401476096