Física estatística de compressed sensing online

Detalhes bibliográficos
Autor(a) principal: Rossi, Paulo Victor Camargo
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22052018-155326/
Resumo: Neste trabalho, Compressed Sensing é introduzido do ponto de vista da Física Estatística. Após uma introdução sucinta onde os conceitos básicos da teoria são apresentados, incluindo condições necessárias para as medições e métodos básicos de reconstrução do sinal, a performance típica do esquema Bayesiano de reconstrução é analisada através de um cálculo de réplicas exposto em detalhe pedagógico. Em seguida, a principal contribuição original do trabalho é introduzida --- o algoritmo Bayesiano de Compressed Sensing Online faz uso de uma aproximação de campo médio para simplificar cálculos e reduzir os requisitos de memória e computação, enquanto mantém a acurácia de reconstrução do esquema offline na presença de ruído aditivo. A última parte deste trabalho contém duas extensões do algoritmo online que permitem reconstrução otimizada do sinal no cenário mais realista onde conhecimento perfeito da distribuição geradora não está disponível.
id USP_cc9ffecb568192dcdc4f8d77cb3928a4
oai_identifier_str oai:teses.usp.br:tde-22052018-155326
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Física estatística de compressed sensing onlineStatistical Physics of Online Compressed SensingCompressed Sensing; Bayesian inference; Statistical Physics; Replicas; Online algorithmsCompressed Sensing; Inferência Bayesiana; Física Estatística; Réplicas; Algoritmos OnlineNeste trabalho, Compressed Sensing é introduzido do ponto de vista da Física Estatística. Após uma introdução sucinta onde os conceitos básicos da teoria são apresentados, incluindo condições necessárias para as medições e métodos básicos de reconstrução do sinal, a performance típica do esquema Bayesiano de reconstrução é analisada através de um cálculo de réplicas exposto em detalhe pedagógico. Em seguida, a principal contribuição original do trabalho é introduzida --- o algoritmo Bayesiano de Compressed Sensing Online faz uso de uma aproximação de campo médio para simplificar cálculos e reduzir os requisitos de memória e computação, enquanto mantém a acurácia de reconstrução do esquema offline na presença de ruído aditivo. A última parte deste trabalho contém duas extensões do algoritmo online que permitem reconstrução otimizada do sinal no cenário mais realista onde conhecimento perfeito da distribuição geradora não está disponível.In this work, Compressed Sensing is introduced from a Statistical Physics point of view. Following a succinct introduction where the basic concepts of the framework are presented, including necessary measurement conditions and basic signal reconstruction methods, the typical performance of the Bayesian reconstruction scheme is analyzed through a replica calculation shown in pedagogical detail. Thereafter, the main original contribution of this work is introduced --- the Bayesian Online Compressed Sensing algorithm makes use of a mean-field approximation to simplify calculations and reduce memory and computation requirements, while maintaining the asymptotic reconstruction accuracy of the offline scheme in the presence of additive noise. The last part of this work are two extensions of the online algorithm that allow for optimized signal reconstruction in the more realistic scenarios where perfect knowledge of the generating distribution is unavailable.Biblioteca Digitais de Teses e Dissertações da USPVicente, RenatoRossi, Paulo Victor Camargo2018-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-22052018-155326/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-09-20T19:49:24Zoai:teses.usp.br:tde-22052018-155326Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T19:49:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Física estatística de compressed sensing online
Statistical Physics of Online Compressed Sensing
title Física estatística de compressed sensing online
spellingShingle Física estatística de compressed sensing online
Rossi, Paulo Victor Camargo
Compressed Sensing; Bayesian inference; Statistical Physics; Replicas; Online algorithms
Compressed Sensing; Inferência Bayesiana; Física Estatística; Réplicas; Algoritmos Online
title_short Física estatística de compressed sensing online
title_full Física estatística de compressed sensing online
title_fullStr Física estatística de compressed sensing online
title_full_unstemmed Física estatística de compressed sensing online
title_sort Física estatística de compressed sensing online
author Rossi, Paulo Victor Camargo
author_facet Rossi, Paulo Victor Camargo
author_role author
dc.contributor.none.fl_str_mv Vicente, Renato
dc.contributor.author.fl_str_mv Rossi, Paulo Victor Camargo
dc.subject.por.fl_str_mv Compressed Sensing; Bayesian inference; Statistical Physics; Replicas; Online algorithms
Compressed Sensing; Inferência Bayesiana; Física Estatística; Réplicas; Algoritmos Online
topic Compressed Sensing; Bayesian inference; Statistical Physics; Replicas; Online algorithms
Compressed Sensing; Inferência Bayesiana; Física Estatística; Réplicas; Algoritmos Online
description Neste trabalho, Compressed Sensing é introduzido do ponto de vista da Física Estatística. Após uma introdução sucinta onde os conceitos básicos da teoria são apresentados, incluindo condições necessárias para as medições e métodos básicos de reconstrução do sinal, a performance típica do esquema Bayesiano de reconstrução é analisada através de um cálculo de réplicas exposto em detalhe pedagógico. Em seguida, a principal contribuição original do trabalho é introduzida --- o algoritmo Bayesiano de Compressed Sensing Online faz uso de uma aproximação de campo médio para simplificar cálculos e reduzir os requisitos de memória e computação, enquanto mantém a acurácia de reconstrução do esquema offline na presença de ruído aditivo. A última parte deste trabalho contém duas extensões do algoritmo online que permitem reconstrução otimizada do sinal no cenário mais realista onde conhecimento perfeito da distribuição geradora não está disponível.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22052018-155326/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22052018-155326/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257269995044864