A benchmark study on intelligent sampling techniques in Monte Carlo simulation

Detalhes bibliográficos
Autor(a) principal: Santos,K.R.M. dos
Data de Publicação: 2015
Outros Autores: Beck,A.T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400624
Resumo: In recent years, new, intelligent and efficient sampling techniques for Monte Carlo simulation have been developed. However, when such new techniques are introduced, they are compared to one or two existing techniques, and their performance is evaluated over two or three problems. A literature survey shows that benchmark studies, comparing the performance of several techniques over several problems, are rarely found. This article presents a benchmark study, comparing Simple or Crude Monte Carlo with four modern sampling techniques: Importance Sampling Monte Carlo, Asymptotic Sampling, Enhanced Sampling and Subset Simulation; which are studied over six problems. Moreover, these techniques are combined with three schemes for generating the underlying samples: Simple Sampling, Latin Hypercube Sampling and Antithetic Variates Sampling. Hence, a total of fifteen sampling strategy combinations are explored herein. Due to space constrains, results are presented for only three of the six problems studied; conclusions, however, cover all problems studied. Results show that Importance Sampling using design points is extremely efficient for evaluating small failure probabilities; however, finding the design point can be an issue for some problems. Subset Simulation presented very good performance for all problems studied herein. Although similar, Enhanced Sampling performed better than Asymptotic Sampling for the problems considered: this is explained by the fact that in Enhanced Sampling the same set of samples is used for all support points; hence a larger number of support points can be employed without increasing the computational cost. Finally, the performance of all the above techniques was improved when combined with Latin Hypercube Sampling, in comparison to Simple or Antithetic Variates sampling.
id ABCM-1_cfaff812edcbcc12414b41a053d5f113
oai_identifier_str oai:scielo:S1679-78252015000400624
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling A benchmark study on intelligent sampling techniques in Monte Carlo simulationStructural reliabilityMonte Carlo simulationintelligent sampling techniquesbenchmark studyIn recent years, new, intelligent and efficient sampling techniques for Monte Carlo simulation have been developed. However, when such new techniques are introduced, they are compared to one or two existing techniques, and their performance is evaluated over two or three problems. A literature survey shows that benchmark studies, comparing the performance of several techniques over several problems, are rarely found. This article presents a benchmark study, comparing Simple or Crude Monte Carlo with four modern sampling techniques: Importance Sampling Monte Carlo, Asymptotic Sampling, Enhanced Sampling and Subset Simulation; which are studied over six problems. Moreover, these techniques are combined with three schemes for generating the underlying samples: Simple Sampling, Latin Hypercube Sampling and Antithetic Variates Sampling. Hence, a total of fifteen sampling strategy combinations are explored herein. Due to space constrains, results are presented for only three of the six problems studied; conclusions, however, cover all problems studied. Results show that Importance Sampling using design points is extremely efficient for evaluating small failure probabilities; however, finding the design point can be an issue for some problems. Subset Simulation presented very good performance for all problems studied herein. Although similar, Enhanced Sampling performed better than Asymptotic Sampling for the problems considered: this is explained by the fact that in Enhanced Sampling the same set of samples is used for all support points; hence a larger number of support points can be employed without increasing the computational cost. Finally, the performance of all the above techniques was improved when combined with Latin Hypercube Sampling, in comparison to Simple or Antithetic Variates sampling.Associação Brasileira de Ciências Mecânicas2015-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400624Latin American Journal of Solids and Structures v.12 n.4 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251245info:eu-repo/semantics/openAccessSantos,K.R.M. dosBeck,A.T.eng2015-09-24T00:00:00Zoai:scielo:S1679-78252015000400624Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-09-24T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv A benchmark study on intelligent sampling techniques in Monte Carlo simulation
title A benchmark study on intelligent sampling techniques in Monte Carlo simulation
spellingShingle A benchmark study on intelligent sampling techniques in Monte Carlo simulation
Santos,K.R.M. dos
Structural reliability
Monte Carlo simulation
intelligent sampling techniques
benchmark study
title_short A benchmark study on intelligent sampling techniques in Monte Carlo simulation
title_full A benchmark study on intelligent sampling techniques in Monte Carlo simulation
title_fullStr A benchmark study on intelligent sampling techniques in Monte Carlo simulation
title_full_unstemmed A benchmark study on intelligent sampling techniques in Monte Carlo simulation
title_sort A benchmark study on intelligent sampling techniques in Monte Carlo simulation
author Santos,K.R.M. dos
author_facet Santos,K.R.M. dos
Beck,A.T.
author_role author
author2 Beck,A.T.
author2_role author
dc.contributor.author.fl_str_mv Santos,K.R.M. dos
Beck,A.T.
dc.subject.por.fl_str_mv Structural reliability
Monte Carlo simulation
intelligent sampling techniques
benchmark study
topic Structural reliability
Monte Carlo simulation
intelligent sampling techniques
benchmark study
description In recent years, new, intelligent and efficient sampling techniques for Monte Carlo simulation have been developed. However, when such new techniques are introduced, they are compared to one or two existing techniques, and their performance is evaluated over two or three problems. A literature survey shows that benchmark studies, comparing the performance of several techniques over several problems, are rarely found. This article presents a benchmark study, comparing Simple or Crude Monte Carlo with four modern sampling techniques: Importance Sampling Monte Carlo, Asymptotic Sampling, Enhanced Sampling and Subset Simulation; which are studied over six problems. Moreover, these techniques are combined with three schemes for generating the underlying samples: Simple Sampling, Latin Hypercube Sampling and Antithetic Variates Sampling. Hence, a total of fifteen sampling strategy combinations are explored herein. Due to space constrains, results are presented for only three of the six problems studied; conclusions, however, cover all problems studied. Results show that Importance Sampling using design points is extremely efficient for evaluating small failure probabilities; however, finding the design point can be an issue for some problems. Subset Simulation presented very good performance for all problems studied herein. Although similar, Enhanced Sampling performed better than Asymptotic Sampling for the problems considered: this is explained by the fact that in Enhanced Sampling the same set of samples is used for all support points; hence a larger number of support points can be employed without increasing the computational cost. Finally, the performance of all the above techniques was improved when combined with Latin Hypercube Sampling, in comparison to Simple or Antithetic Variates sampling.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400624
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400624
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78251245
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.12 n.4 2015
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302887978074112