Gadolinium increases the vascular reactivity of rat aortic rings

Detalhes bibliográficos
Autor(a) principal: Angeli,J.K.
Data de Publicação: 2011
Outros Autores: Ramos,D.B., Casali,E.A., Souza,D.O.G., Sarkis,J.J.F., Stefanon,I., Vassallo,D.V., Fürstenau,C.R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2011000500010
Resumo: Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.
id ABDC-1_87d5084c0a3d9ade0bb57bd4204191cc
oai_identifier_str oai:scielo:S0100-879X2011000500010
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Gadolinium increases the vascular reactivity of rat aortic ringsGadoliniumE-NTPDaseAdenosineAngiotensin IIAT1receptorGadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.Associação Brasileira de Divulgação Científica2011-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2011000500010Brazilian Journal of Medical and Biological Research v.44 n.5 2011reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X2011007500044info:eu-repo/semantics/openAccessAngeli,J.K.Ramos,D.B.Casali,E.A.Souza,D.O.G.Sarkis,J.J.F.Stefanon,I.Vassallo,D.V.Fürstenau,C.R.eng2011-11-11T00:00:00Zoai:scielo:S0100-879X2011000500010Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2011-11-11T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Gadolinium increases the vascular reactivity of rat aortic rings
title Gadolinium increases the vascular reactivity of rat aortic rings
spellingShingle Gadolinium increases the vascular reactivity of rat aortic rings
Angeli,J.K.
Gadolinium
E-NTPDase
Adenosine
Angiotensin II
AT1receptor
title_short Gadolinium increases the vascular reactivity of rat aortic rings
title_full Gadolinium increases the vascular reactivity of rat aortic rings
title_fullStr Gadolinium increases the vascular reactivity of rat aortic rings
title_full_unstemmed Gadolinium increases the vascular reactivity of rat aortic rings
title_sort Gadolinium increases the vascular reactivity of rat aortic rings
author Angeli,J.K.
author_facet Angeli,J.K.
Ramos,D.B.
Casali,E.A.
Souza,D.O.G.
Sarkis,J.J.F.
Stefanon,I.
Vassallo,D.V.
Fürstenau,C.R.
author_role author
author2 Ramos,D.B.
Casali,E.A.
Souza,D.O.G.
Sarkis,J.J.F.
Stefanon,I.
Vassallo,D.V.
Fürstenau,C.R.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Angeli,J.K.
Ramos,D.B.
Casali,E.A.
Souza,D.O.G.
Sarkis,J.J.F.
Stefanon,I.
Vassallo,D.V.
Fürstenau,C.R.
dc.subject.por.fl_str_mv Gadolinium
E-NTPDase
Adenosine
Angiotensin II
AT1receptor
topic Gadolinium
E-NTPDase
Adenosine
Angiotensin II
AT1receptor
description Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.
publishDate 2011
dc.date.none.fl_str_mv 2011-05-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2011000500010
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2011000500010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-879X2011007500044
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.44 n.5 2011
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302939949694976