Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)

Detalhes bibliográficos
Autor(a) principal: Kerchove,C.M.
Data de Publicação: 2002
Outros Autores: Markus,R.P., Freitas,J.C., Costa-Lotufo,L.V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2002000400013
Resumo: Trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.
id ABDC-1_cc76d9ce0ed8a013cd657c62a0cfac18
oai_identifier_str oai:scielo:S0100-879X2002000400013
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)Aplysia brasilianaTrimethylsulfoniumCholinergic systemsMuscarinic acetylcholine receptorsNicotinic acetylcholine receptorsTrimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.Associação Brasileira de Divulgação Científica2002-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2002000400013Brazilian Journal of Medical and Biological Research v.35 n.4 2002reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X2002000400013info:eu-repo/semantics/openAccessKerchove,C.M.Markus,R.P.Freitas,J.C.Costa-Lotufo,L.V.eng2002-04-09T00:00:00Zoai:scielo:S0100-879X2002000400013Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2002-04-09T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
title Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
spellingShingle Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
Kerchove,C.M.
Aplysia brasiliana
Trimethylsulfonium
Cholinergic systems
Muscarinic acetylcholine receptors
Nicotinic acetylcholine receptors
title_short Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
title_full Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
title_fullStr Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
title_full_unstemmed Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
title_sort Evaluation of the cholinomimetic actions of trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana (Gastropoda, Opisthobranchia)
author Kerchove,C.M.
author_facet Kerchove,C.M.
Markus,R.P.
Freitas,J.C.
Costa-Lotufo,L.V.
author_role author
author2 Markus,R.P.
Freitas,J.C.
Costa-Lotufo,L.V.
author2_role author
author
author
dc.contributor.author.fl_str_mv Kerchove,C.M.
Markus,R.P.
Freitas,J.C.
Costa-Lotufo,L.V.
dc.subject.por.fl_str_mv Aplysia brasiliana
Trimethylsulfonium
Cholinergic systems
Muscarinic acetylcholine receptors
Nicotinic acetylcholine receptors
topic Aplysia brasiliana
Trimethylsulfonium
Cholinergic systems
Muscarinic acetylcholine receptors
Nicotinic acetylcholine receptors
description Trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.
publishDate 2002
dc.date.none.fl_str_mv 2002-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2002000400013
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2002000400013
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-879X2002000400013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.35 n.4 2002
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302931671187456