Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions

Detalhes bibliográficos
Autor(a) principal: Bottino,Flávia
Data de Publicação: 2013
Outros Autores: Calijuri,Maria do Carmo, Murphy,Kevin Joseph
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta Limnologica Brasiliensia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2013000200010
Resumo: AIM:This study reports a comparison between decomposition kinetics of detritus derived from two macrophyte species (Polygonum lapathifolium L.: Polygonaceae; Eichhornia azurea (Sw.) Kunth.: Pontederiaceae) growing in a neotropical reservoir (Brazil), under laboratory and field conditions, in order to assess hypotheses on the main differences in factors affecting organic matter cycling, including the effect of temperature. METHODS: Plant and water samples were collected from the reservoir in August 2009. In field incubation mass loss was assessed using a litter bag technique and in the laboratory the decay was followed using a decomposition chamber maintained under controlled conditions (i.e. in the dark, at 15 ºC and 25 ºC). A kinetic model was adopted to explain and compare the organic matter decay, ANOVA (Repeated Measures) testing was used to describe the differences between the treatments and a linear correlation was used to compare in situ and in vitro experiments. RESULTS: The mass decay was faster in natural conditions with rapid release of the labile-soluble portion. The simulated values of mineralization rates of dissolved organic matter and refractory organic matter were rapid in high temperatures (25 ºC). The high Q10 results (mainly for E. azurea), and experimental conditions, and outcomes of ANOVA testing indicate the temperature variation (10 ºC) influence the rates of mass decay. CONCLUSIONS: The results suggested rapid organic matter cycling in warm months (from October to December) supporting the microbial loop. Although the particulate organic matter losses are high in field conditions the results are of the same magnitude in both conditions suggesting an equivalence of the mass decay kinetic.
id ABL-1_c611796e51aee8a36d3597856bf9d00f
oai_identifier_str oai:scielo:S2179-975X2013000200010
network_acronym_str ABL-1
network_name_str Acta Limnologica Brasiliensia (Online)
repository_id_str
spelling Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditionsaquatic plantsdetritusdecompositionkinetic modelAIM:This study reports a comparison between decomposition kinetics of detritus derived from two macrophyte species (Polygonum lapathifolium L.: Polygonaceae; Eichhornia azurea (Sw.) Kunth.: Pontederiaceae) growing in a neotropical reservoir (Brazil), under laboratory and field conditions, in order to assess hypotheses on the main differences in factors affecting organic matter cycling, including the effect of temperature. METHODS: Plant and water samples were collected from the reservoir in August 2009. In field incubation mass loss was assessed using a litter bag technique and in the laboratory the decay was followed using a decomposition chamber maintained under controlled conditions (i.e. in the dark, at 15 ºC and 25 ºC). A kinetic model was adopted to explain and compare the organic matter decay, ANOVA (Repeated Measures) testing was used to describe the differences between the treatments and a linear correlation was used to compare in situ and in vitro experiments. RESULTS: The mass decay was faster in natural conditions with rapid release of the labile-soluble portion. The simulated values of mineralization rates of dissolved organic matter and refractory organic matter were rapid in high temperatures (25 ºC). The high Q10 results (mainly for E. azurea), and experimental conditions, and outcomes of ANOVA testing indicate the temperature variation (10 ºC) influence the rates of mass decay. CONCLUSIONS: The results suggested rapid organic matter cycling in warm months (from October to December) supporting the microbial loop. Although the particulate organic matter losses are high in field conditions the results are of the same magnitude in both conditions suggesting an equivalence of the mass decay kinetic.Associação Brasileira de Limnologia2013-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2013000200010Acta Limnologica Brasiliensia v.25 n.2 2013reponame:Acta Limnologica Brasiliensia (Online)instname:Associação Brasileira de Limnologia (ABL)instacron:ABL10.1590/S2179-975X2013000200010info:eu-repo/semantics/openAccessBottino,FláviaCalijuri,Maria do CarmoMurphy,Kevin Josepheng2013-11-08T00:00:00Zoai:scielo:S2179-975X2013000200010Revistahttp://www.ablimno.org.br/publiActa.phphttps://old.scielo.br/oai/scielo-oai.php||actalb@rc.unesp.br2179-975X0102-6712opendoar:2013-11-08T00:00Acta Limnologica Brasiliensia (Online) - Associação Brasileira de Limnologia (ABL)false
dc.title.none.fl_str_mv Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
title Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
spellingShingle Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
Bottino,Flávia
aquatic plants
detritus
decomposition
kinetic model
title_short Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
title_full Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
title_fullStr Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
title_full_unstemmed Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
title_sort Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions
author Bottino,Flávia
author_facet Bottino,Flávia
Calijuri,Maria do Carmo
Murphy,Kevin Joseph
author_role author
author2 Calijuri,Maria do Carmo
Murphy,Kevin Joseph
author2_role author
author
dc.contributor.author.fl_str_mv Bottino,Flávia
Calijuri,Maria do Carmo
Murphy,Kevin Joseph
dc.subject.por.fl_str_mv aquatic plants
detritus
decomposition
kinetic model
topic aquatic plants
detritus
decomposition
kinetic model
description AIM:This study reports a comparison between decomposition kinetics of detritus derived from two macrophyte species (Polygonum lapathifolium L.: Polygonaceae; Eichhornia azurea (Sw.) Kunth.: Pontederiaceae) growing in a neotropical reservoir (Brazil), under laboratory and field conditions, in order to assess hypotheses on the main differences in factors affecting organic matter cycling, including the effect of temperature. METHODS: Plant and water samples were collected from the reservoir in August 2009. In field incubation mass loss was assessed using a litter bag technique and in the laboratory the decay was followed using a decomposition chamber maintained under controlled conditions (i.e. in the dark, at 15 ºC and 25 ºC). A kinetic model was adopted to explain and compare the organic matter decay, ANOVA (Repeated Measures) testing was used to describe the differences between the treatments and a linear correlation was used to compare in situ and in vitro experiments. RESULTS: The mass decay was faster in natural conditions with rapid release of the labile-soluble portion. The simulated values of mineralization rates of dissolved organic matter and refractory organic matter were rapid in high temperatures (25 ºC). The high Q10 results (mainly for E. azurea), and experimental conditions, and outcomes of ANOVA testing indicate the temperature variation (10 ºC) influence the rates of mass decay. CONCLUSIONS: The results suggested rapid organic matter cycling in warm months (from October to December) supporting the microbial loop. Although the particulate organic matter losses are high in field conditions the results are of the same magnitude in both conditions suggesting an equivalence of the mass decay kinetic.
publishDate 2013
dc.date.none.fl_str_mv 2013-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2013000200010
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2013000200010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S2179-975X2013000200010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Limnologia
publisher.none.fl_str_mv Associação Brasileira de Limnologia
dc.source.none.fl_str_mv Acta Limnologica Brasiliensia v.25 n.2 2013
reponame:Acta Limnologica Brasiliensia (Online)
instname:Associação Brasileira de Limnologia (ABL)
instacron:ABL
instname_str Associação Brasileira de Limnologia (ABL)
instacron_str ABL
institution ABL
reponame_str Acta Limnologica Brasiliensia (Online)
collection Acta Limnologica Brasiliensia (Online)
repository.name.fl_str_mv Acta Limnologica Brasiliensia (Online) - Associação Brasileira de Limnologia (ABL)
repository.mail.fl_str_mv ||actalb@rc.unesp.br
_version_ 1754212636343402496