Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys

Detalhes bibliográficos
Autor(a) principal: Furtado,Henrique Silva
Data de Publicação: 2009
Outros Autores: Bernardes,Américo Tristão, Machado,Romuel Figueiredo, Silva,Carlos Antônio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300016
Resumo: Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999)] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004)] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ) of 8 nanometers reproduced the solute (Cu) equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007)]) was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.
id ABMABCABPOL-1_bd529443a3edbf2079b279c9b7af0f1d
oai_identifier_str oai:scielo:S1516-14392009000300016
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloysphase-fieldsolute trappingdilute alloyssolidificationNumerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999)] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004)] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ) of 8 nanometers reproduced the solute (Cu) equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007)]) was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.ABM, ABC, ABPol2009-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300016Materials Research v.12 n.3 2009reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392009000300016info:eu-repo/semantics/openAccessFurtado,Henrique SilvaBernardes,Américo TristãoMachado,Romuel FigueiredoSilva,Carlos Antônioeng2009-11-06T00:00:00Zoai:scielo:S1516-14392009000300016Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2009-11-06T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
title Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
spellingShingle Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
Furtado,Henrique Silva
phase-field
solute trapping
dilute alloys
solidification
title_short Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
title_full Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
title_fullStr Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
title_full_unstemmed Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
title_sort Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys
author Furtado,Henrique Silva
author_facet Furtado,Henrique Silva
Bernardes,Américo Tristão
Machado,Romuel Figueiredo
Silva,Carlos Antônio
author_role author
author2 Bernardes,Américo Tristão
Machado,Romuel Figueiredo
Silva,Carlos Antônio
author2_role author
author
author
dc.contributor.author.fl_str_mv Furtado,Henrique Silva
Bernardes,Américo Tristão
Machado,Romuel Figueiredo
Silva,Carlos Antônio
dc.subject.por.fl_str_mv phase-field
solute trapping
dilute alloys
solidification
topic phase-field
solute trapping
dilute alloys
solidification
description Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999)] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004)] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ) of 8 nanometers reproduced the solute (Cu) equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007)]) was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.
publishDate 2009
dc.date.none.fl_str_mv 2009-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300016
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300016
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1516-14392009000300016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.12 n.3 2009
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212659309314048