Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films

Detalhes bibliográficos
Autor(a) principal: Floriano,Emerson Aparecido
Data de Publicação: 2010
Outros Autores: Scalvi,Luis Vicente de Andrade, Sambrano,Julio Ricardo, Geraldo,Viviany
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400004
Resumo: The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110) and (101) surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110) and (101) surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101) surface, which presents direct bandgap transition.
id ABMABCABPOL-1_cabbc7483284ef4be84f2639daddf79b
oai_identifier_str oai:scielo:S1516-14392010000400004
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin filmstin dioxidesol-gelthin filmselectronic structureoptical absorptionThe absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110) and (101) surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110) and (101) surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101) surface, which presents direct bandgap transition.ABM, ABC, ABPol2010-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400004Materials Research v.13 n.4 2010reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392010000400004info:eu-repo/semantics/openAccessFloriano,Emerson AparecidoScalvi,Luis Vicente de AndradeSambrano,Julio RicardoGeraldo,Vivianyeng2011-01-24T00:00:00Zoai:scielo:S1516-14392010000400004Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2011-01-24T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
title Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
spellingShingle Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
Floriano,Emerson Aparecido
tin dioxide
sol-gel
thin films
electronic structure
optical absorption
title_short Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
title_full Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
title_fullStr Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
title_full_unstemmed Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
title_sort Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films
author Floriano,Emerson Aparecido
author_facet Floriano,Emerson Aparecido
Scalvi,Luis Vicente de Andrade
Sambrano,Julio Ricardo
Geraldo,Viviany
author_role author
author2 Scalvi,Luis Vicente de Andrade
Sambrano,Julio Ricardo
Geraldo,Viviany
author2_role author
author
author
dc.contributor.author.fl_str_mv Floriano,Emerson Aparecido
Scalvi,Luis Vicente de Andrade
Sambrano,Julio Ricardo
Geraldo,Viviany
dc.subject.por.fl_str_mv tin dioxide
sol-gel
thin films
electronic structure
optical absorption
topic tin dioxide
sol-gel
thin films
electronic structure
optical absorption
description The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110) and (101) surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110) and (101) surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101) surface, which presents direct bandgap transition.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1516-14392010000400004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.13 n.4 2010
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212659699384320