Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings

Detalhes bibliográficos
Autor(a) principal: Piva,Roger Honorato
Data de Publicação: 2016
Outros Autores: Piva,Diógenes Honorato, Morelli,Márcio Raymundo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000100031
Resumo: Coprecipitation synthesis of nanocrystalline india-stabilized zirconia with high surface area and codoping with MoO3, WO3, TaO2.5, or NbO2.5 is reported. The concentration of codopants was defined by the charge-compensating mechanism. Ethanol washing followed by azeotropic distillation and freeze drying were compared as dehydration techniques for the gels. As determined by XRD and Raman scattering, 9 mol% of InO1.5 plus charge-compensating dopants is sufficient to completely stabilize the high-temperature tetragonal phase of zirconia. The effect of alloying hexavalent and pentavalent oxides was secondary compared to the InO1.5 concentration in the retention of the tetragonal structure. Improved specific surface area of 106.1 m2 g‒1 and crystallite size between 8 and 9 nm were achieved through ethanol washing and subsequent azeotropic distillation even after calcination at 600 ºC. This result is attributed to the effect of the incorporation of ethoxy and butoxy groups after the treatment of the gels in organic medium, as detected by FT-IR spectroscopy and DSC/TG.
id ABMABCABPOL-1_e346e0757f06f526cd933c75edd0b9c0
oai_identifier_str oai:scielo:S1516-14392016000100031
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatingsZirconiaThermal barrier coatingCoprecipitationAzeotropic distillationFreeze dryingCoprecipitation synthesis of nanocrystalline india-stabilized zirconia with high surface area and codoping with MoO3, WO3, TaO2.5, or NbO2.5 is reported. The concentration of codopants was defined by the charge-compensating mechanism. Ethanol washing followed by azeotropic distillation and freeze drying were compared as dehydration techniques for the gels. As determined by XRD and Raman scattering, 9 mol% of InO1.5 plus charge-compensating dopants is sufficient to completely stabilize the high-temperature tetragonal phase of zirconia. The effect of alloying hexavalent and pentavalent oxides was secondary compared to the InO1.5 concentration in the retention of the tetragonal structure. Improved specific surface area of 106.1 m2 g‒1 and crystallite size between 8 and 9 nm were achieved through ethanol washing and subsequent azeotropic distillation even after calcination at 600 ºC. This result is attributed to the effect of the incorporation of ethoxy and butoxy groups after the treatment of the gels in organic medium, as detected by FT-IR spectroscopy and DSC/TG.ABM, ABC, ABPol2016-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000100031Materials Research v.19 n.1 2016reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-MR-2015-0050info:eu-repo/semantics/openAccessPiva,Roger HonoratoPiva,Diógenes HonoratoMorelli,Márcio Raymundoeng2016-03-29T00:00:00Zoai:scielo:S1516-14392016000100031Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2016-03-29T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
title Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
spellingShingle Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
Piva,Roger Honorato
Zirconia
Thermal barrier coating
Coprecipitation
Azeotropic distillation
Freeze drying
title_short Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
title_full Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
title_fullStr Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
title_full_unstemmed Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
title_sort Synthesis by coprecipitation of india-stabilized zirconia and codoping with MoO3, WO3, TaO2.5, or NbO2.5 for application as thermal barrier coatings
author Piva,Roger Honorato
author_facet Piva,Roger Honorato
Piva,Diógenes Honorato
Morelli,Márcio Raymundo
author_role author
author2 Piva,Diógenes Honorato
Morelli,Márcio Raymundo
author2_role author
author
dc.contributor.author.fl_str_mv Piva,Roger Honorato
Piva,Diógenes Honorato
Morelli,Márcio Raymundo
dc.subject.por.fl_str_mv Zirconia
Thermal barrier coating
Coprecipitation
Azeotropic distillation
Freeze drying
topic Zirconia
Thermal barrier coating
Coprecipitation
Azeotropic distillation
Freeze drying
description Coprecipitation synthesis of nanocrystalline india-stabilized zirconia with high surface area and codoping with MoO3, WO3, TaO2.5, or NbO2.5 is reported. The concentration of codopants was defined by the charge-compensating mechanism. Ethanol washing followed by azeotropic distillation and freeze drying were compared as dehydration techniques for the gels. As determined by XRD and Raman scattering, 9 mol% of InO1.5 plus charge-compensating dopants is sufficient to completely stabilize the high-temperature tetragonal phase of zirconia. The effect of alloying hexavalent and pentavalent oxides was secondary compared to the InO1.5 concentration in the retention of the tetragonal structure. Improved specific surface area of 106.1 m2 g‒1 and crystallite size between 8 and 9 nm were achieved through ethanol washing and subsequent azeotropic distillation even after calcination at 600 ºC. This result is attributed to the effect of the incorporation of ethoxy and butoxy groups after the treatment of the gels in organic medium, as detected by FT-IR spectroscopy and DSC/TG.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000100031
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000100031
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-MR-2015-0050
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.19 n.1 2016
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212667578384384