A major problem in strabismus and its possible solution

Detalhes bibliográficos
Autor(a) principal: Bicas,Harley E. A.
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Arquivos brasileiros de oftalmologia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27492014000400250
Resumo: Purpose: One of the challenges in strabismus is to guarantee stability of the surgical corrections. Re-surgeries are often required even after careful diagnosis, planning, and execution. Several factors contribute to this undesired outcome and the existing management strategies are ineffective. The present alternative is to compensate for their consequences. Ocular rotations are evoked by muscular contractions and relaxations (active forces). During eye movement, periocular tissues are stretched, storing part of the kinetic energy, which may be posteriorly recovered (passive forces), whereas the remaining part of the energy is lost via friction and inelastic deformations (dissipative forces). A method for measuring the forces that cause post-surgery eye drift has not been reported. However, this may be indirectly determined as a function of the respective mechanical variables. The estimated ratio between the kinetic energies of a post-surgery eye drift and a normal pursuit eye movement is ~10-15. Theoretically, it can be expected that the addition of continuously acting forces of such magnitudes to the oculomotor system might prevent the undesired post-surgery eye movement. Methods: Several methods for increasing the restraining, dissipative forces to ocular rotations may be conceived. One method is to increase the friction to ocular movements, as for instance, by periocular injection of viscous substances. Another possibility is to use the forces of a magnetic field, which may stabilize the eye in a desired position without avoiding the rotations caused by greater muscular forces acting on it. It has been demonstrated that these forces neutralize the nystagmic movements, whose intensities of mechanical variables are much higher than those of a post-surgery eye drift. Some models of application of this technique are then discussed. Small magnets fixed to the orbit and metallic ferromagnetic elements fixed to the sclera to cover a suitable extension appears to be the best method for providing starting and sliding friction to the oculomotor system. Results: Weak magnetic fields do not cause ocular ill effects. Additionally, the magnetic field may be confined to the elements of the circuit and may not leak. However, the magnetic materials may interfere with magnetic resonance image (MRI) examinations.
id CBO-2_54647908c4828949bc321f7cd8bf19f8
oai_identifier_str oai:scielo:S0004-27492014000400250
network_acronym_str CBO-2
network_name_str Arquivos brasileiros de oftalmologia (Online)
repository_id_str
spelling A major problem in strabismus and its possible solutionStrabismus/surgeryOculomotor muscles/physiopathologyAdaptation, ocularMuscle tonusOptical rotationViscoelastic substances Purpose: One of the challenges in strabismus is to guarantee stability of the surgical corrections. Re-surgeries are often required even after careful diagnosis, planning, and execution. Several factors contribute to this undesired outcome and the existing management strategies are ineffective. The present alternative is to compensate for their consequences. Ocular rotations are evoked by muscular contractions and relaxations (active forces). During eye movement, periocular tissues are stretched, storing part of the kinetic energy, which may be posteriorly recovered (passive forces), whereas the remaining part of the energy is lost via friction and inelastic deformations (dissipative forces). A method for measuring the forces that cause post-surgery eye drift has not been reported. However, this may be indirectly determined as a function of the respective mechanical variables. The estimated ratio between the kinetic energies of a post-surgery eye drift and a normal pursuit eye movement is ~10-15. Theoretically, it can be expected that the addition of continuously acting forces of such magnitudes to the oculomotor system might prevent the undesired post-surgery eye movement. Methods: Several methods for increasing the restraining, dissipative forces to ocular rotations may be conceived. One method is to increase the friction to ocular movements, as for instance, by periocular injection of viscous substances. Another possibility is to use the forces of a magnetic field, which may stabilize the eye in a desired position without avoiding the rotations caused by greater muscular forces acting on it. It has been demonstrated that these forces neutralize the nystagmic movements, whose intensities of mechanical variables are much higher than those of a post-surgery eye drift. Some models of application of this technique are then discussed. Small magnets fixed to the orbit and metallic ferromagnetic elements fixed to the sclera to cover a suitable extension appears to be the best method for providing starting and sliding friction to the oculomotor system. Results: Weak magnetic fields do not cause ocular ill effects. Additionally, the magnetic field may be confined to the elements of the circuit and may not leak. However, the magnetic materials may interfere with magnetic resonance image (MRI) examinations. Conselho Brasileiro de Oftalmologia2014-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27492014000400250Arquivos Brasileiros de Oftalmologia v.77 n.4 2014reponame:Arquivos brasileiros de oftalmologia (Online)instname:Conselho Brasileiro de Oftalmologia (CBO)instacron:CBO10.5935/0004-2749.20140063info:eu-repo/semantics/openAccessBicas,Harley E. A.eng2014-11-13T00:00:00Zoai:scielo:S0004-27492014000400250Revistahttp://aboonline.org.br/https://old.scielo.br/oai/scielo-oai.phpaboonline@cbo.com.br||abo@cbo.com.br1678-29250004-2749opendoar:2014-11-13T00:00Arquivos brasileiros de oftalmologia (Online) - Conselho Brasileiro de Oftalmologia (CBO)false
dc.title.none.fl_str_mv A major problem in strabismus and its possible solution
title A major problem in strabismus and its possible solution
spellingShingle A major problem in strabismus and its possible solution
Bicas,Harley E. A.
Strabismus/surgery
Oculomotor muscles/physiopathology
Adaptation, ocular
Muscle tonus
Optical rotation
Viscoelastic substances
title_short A major problem in strabismus and its possible solution
title_full A major problem in strabismus and its possible solution
title_fullStr A major problem in strabismus and its possible solution
title_full_unstemmed A major problem in strabismus and its possible solution
title_sort A major problem in strabismus and its possible solution
author Bicas,Harley E. A.
author_facet Bicas,Harley E. A.
author_role author
dc.contributor.author.fl_str_mv Bicas,Harley E. A.
dc.subject.por.fl_str_mv Strabismus/surgery
Oculomotor muscles/physiopathology
Adaptation, ocular
Muscle tonus
Optical rotation
Viscoelastic substances
topic Strabismus/surgery
Oculomotor muscles/physiopathology
Adaptation, ocular
Muscle tonus
Optical rotation
Viscoelastic substances
description Purpose: One of the challenges in strabismus is to guarantee stability of the surgical corrections. Re-surgeries are often required even after careful diagnosis, planning, and execution. Several factors contribute to this undesired outcome and the existing management strategies are ineffective. The present alternative is to compensate for their consequences. Ocular rotations are evoked by muscular contractions and relaxations (active forces). During eye movement, periocular tissues are stretched, storing part of the kinetic energy, which may be posteriorly recovered (passive forces), whereas the remaining part of the energy is lost via friction and inelastic deformations (dissipative forces). A method for measuring the forces that cause post-surgery eye drift has not been reported. However, this may be indirectly determined as a function of the respective mechanical variables. The estimated ratio between the kinetic energies of a post-surgery eye drift and a normal pursuit eye movement is ~10-15. Theoretically, it can be expected that the addition of continuously acting forces of such magnitudes to the oculomotor system might prevent the undesired post-surgery eye movement. Methods: Several methods for increasing the restraining, dissipative forces to ocular rotations may be conceived. One method is to increase the friction to ocular movements, as for instance, by periocular injection of viscous substances. Another possibility is to use the forces of a magnetic field, which may stabilize the eye in a desired position without avoiding the rotations caused by greater muscular forces acting on it. It has been demonstrated that these forces neutralize the nystagmic movements, whose intensities of mechanical variables are much higher than those of a post-surgery eye drift. Some models of application of this technique are then discussed. Small magnets fixed to the orbit and metallic ferromagnetic elements fixed to the sclera to cover a suitable extension appears to be the best method for providing starting and sliding friction to the oculomotor system. Results: Weak magnetic fields do not cause ocular ill effects. Additionally, the magnetic field may be confined to the elements of the circuit and may not leak. However, the magnetic materials may interfere with magnetic resonance image (MRI) examinations.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27492014000400250
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27492014000400250
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5935/0004-2749.20140063
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Conselho Brasileiro de Oftalmologia
publisher.none.fl_str_mv Conselho Brasileiro de Oftalmologia
dc.source.none.fl_str_mv Arquivos Brasileiros de Oftalmologia v.77 n.4 2014
reponame:Arquivos brasileiros de oftalmologia (Online)
instname:Conselho Brasileiro de Oftalmologia (CBO)
instacron:CBO
instname_str Conselho Brasileiro de Oftalmologia (CBO)
instacron_str CBO
institution CBO
reponame_str Arquivos brasileiros de oftalmologia (Online)
collection Arquivos brasileiros de oftalmologia (Online)
repository.name.fl_str_mv Arquivos brasileiros de oftalmologia (Online) - Conselho Brasileiro de Oftalmologia (CBO)
repository.mail.fl_str_mv aboonline@cbo.com.br||abo@cbo.com.br
_version_ 1754209028171366400